Ing. Hasenöhrl Stanislav

Stoklas, R., Hasenőhrl, S., Dobročka, E., Gucmann, F., and Kuzmík, J.:  Electron transport properties in thin InN layers grown on InAlN, Mater. Sci  Semicond. Process. 155 (2023) 107250.

1. He, Z.: Vacuum 220 (2024) 112833.

Šichman, P., Stoklas, R., Hasenöhrl, S., Gregušová, D., Ťapajna, M., Hudec, B., Haščík, Š., Hashizume, T., Chvála, A., Šatka, A., and Kuzmík, J.: Vertical GaN transistor with semi-insulating channel, Physica Status Solidi (a) 220 (2023) SI2200776.

1. Woo, K.: J. Phys.-Mater. 7 (2024) 022003.

Novák, J., Laurenčíková, A., Eliáš, P., Hasenöhrl, S., Sojková, M., Kováč, J.jr., and Kováč, J.: Investigation of a nanostructured GaP/MoS2 p-n heterojunction photodiode, AIP Adv. 12 (2022) 065004.

1. Late, D.: AIP Adv. 12 (2022) 110401.

Stoklas, R., Chvála, A., Šichman, P., Hasenöhrl, S., Haščík, Š., Priesol, J., Šatka, A., and Kuzmík, J.: Analysis and modeling of vertical current conduction and breakdown mechanisms in semi-insulating GaN grown on GaN: role of deep levels, IEEE Trans. Electron Dev. 68 (2021) 2365.

1. Kim, H.: J. Electron. Mater. 50 (2021) 6688.
2. Qin, Y.: J. Phys. D 56 (2023) 093001.
3. Liu, B.: Inter. J. Numeric. Modell.-Electron. Networks Dev. Fields 37 (2024) Iss. 2.

Novák, J., Eliáš, P., Hasenöhrl, S., Laurenčíková, A., Kováč, J.jr., Urbancová, P., and Pudiš, D.: Twinned nanoparticle structures for surface enhanced Raman scattering, Applied Surface Sci 528 (2020) 146548.

1. Dumiszewska, E.: Crystals 13 (2023) 1539.

Chauhan, P., Hasenöhrl, S., Vančo, Ľ., Šiffalovič, P., Dobročka, E., Machajdík, D., Rosová, A., Gucmann, F., Kováč, J.jr., Maťko, I., Kuball, M., and Kuzmík, J.: A systematic study of MOCVD reactor conditions and Ga memory effect on properties of thick InAl(Ga)N layers: A complete depth-resolved investigation, CrystEngComm 22 (2020) 130-141.

1. Chen, W.C.: Surface Topography-Metrol. Propert. 11 (2023) 024002.

Chauhan, P., Hasenöhrl, S., Minj, A., Chauvat, M.P., Ruterana, P., and Kuzmík, J.: Growth evolution of N-polar Indium-rich InAlN layer on c-sapphire via strain relaxation by ultrathin AlON interlayer, Applied Surface Sci 502 (2020) 144086.

1. Chen, L.: Crystal Growth Design 21 (2021) 2911.
2. Shih, H.J.: J. Alloys Comp. 890 (2022) 161797.

Šichman, P., Hasenöhrl, S., Stoklas, R., Priesol, J., Dobročka, E., Haščík, Š., Gucmann, F., Vincze, A., Chvála, A., Marek, J., Šatka, A., and Kuzmík, J.: Semi-insulating GaN for vertical structures: role of substrate selection and growth pressure, Mater. Sci Semicond. Process. 118 (2020) 105203.

1. Mochizuki, K.: Japan. J. Applied Phys. 60 (2021) 018002.
2. Pan, Y.: Inter. J. Energy Res. 45 (2021) 15512.
3. Qin, Y.: J. Phys. D 56 (2023) 093001.

Hasenöhrl, S., Chauhan, P., Dobročka, E., Stoklas, R., Vančo, Ľ., Veselý, M., Bouazzaoui, F., Chauvat, M.-P., Reterana, P., and Kuzmík, J.: Generation of hole gas in non-inverted InAl(Ga)N/GaN heterostructures, Applied Phys. Express 12 (2019) 014001.

1. Murugapandiyan, P.: J. Electronic Mater. ‏49 (2020) SI524.

Gregušová, D., Tóth, L., Pohorelec, O., Hasenöhrl, S., Haščík, Š., Cora, I., Fogarassy, Z., Stoklas, R., Seifertová, A., Blaho, M., Laurenčíková, A., Oyobiki, T., Pécz, B., Hashizume, T., and Kuzmík, J.: InGaN/(GaN)/AlGaN/GaN normally-off metal-oxide-semiconductor high-electron mobility transistors with etched access region, Japan. J. Applied Phys. 58 (2019) SCCCD21.

1. Biswas, D.: Mater. Sci Semicond. Process. 135 (2021) 106109.

Pohorelec, O., Ťapajna, M., Gregušová, D., Gucmann, F., Hasenöhrl, S., Haščík, Š., Stoklas, R., Seifertová, A., Pécz, B., Tóth, L., and Kuzmík, J.: Investigation of interfaces and threshold voltage instabilities in normally-off MOS-gated InGaN/AlGaN/GaN HEMTs, Applied Surface Sci 528 (2020) 146824.

1. Tian, Y.: Inter. J. Electrochem. Sci 15 (2020) 12682.

Chauhan, P., Hasenöhrl, S., Dobročka, E., Vančo, Ľ., Stoklas, R., Kováč, J., Šiffalovič, P., and Kuzmík J.: Effect of temperature and carrier gas on the properties of thick InxAl1-xN layer, Applied Surface Sci 470 (2019) 1-7.

1. Bangolla, H.K.: Nanoscale Adv. 4 (2022) 4886.

Chauhan, P., Hasenöhrl, S., Dobročka, E., Chauvat, M.-P., Minj, A., Gucmann, F., Vančo, Ľ., Kováč, J.jr., Kret, S., Ruterana, P., Kuball, M., Šiffalovič, P., and Kuzmík, J.: Evidence of relationship between strain and In-incorporation: growth of N-polar In-rich InAlN buffer layer by OMCVD, J. Applied Phys. 125 (2019) 105304.

1. Biswas, D.: J. Applied Phys. 125 (2019) 225707.
2. Toprak, A.: Mater. Res. Express 8 (2021) 126302.
#     3. Wang, X.: Zhenkong Kexue yu Jishu Xuebao/J. Vacuum Sci Technol. 42 (2022) 151.

Novák, J., Laurenčíková, A., Eliáš, P., Hasenöhrl, S., Sojková, M., Dobročka, E., Kováč, J.jr., Kováč, J., Ďurišová, J., and Pudiš, D.: Nanorods and nanocones for advanced sensor applications, Applied Surface Sci 461 (2018) 61-65.

1. Rajkumar, C.: Results in Phys. 15 (2019) 102647.
2. Rajkumar, C.: Vacuum 168 (2019) UNSP 108856.
3. Chen, Y.: Adv. Mater. 32 (2021) 2001668.
4. Dumiszewska, E.: Crystals 13 (2023) 1539.

Laurenčíková, A., Eliáš, P., Hasenöhrl, S., Kováč, J.jr., Szobolovszký, R., and Novák, J.: GaP nanocones covered with silver nanoparticles for surface-enhanced Raman spectroscopy, Applied Surface Sci 461 (2018) 149-153.

1. Zeng, Y.: Applied Surface Sci 544 (2021) 148924.
2. Liu, Y.: Mater. Horizons ‏ 8 (2021)‏ 370.
3. Ge, K.: Sensors Actuators B 361 (2022) 131734.
4. Ge, K.: Analyt. Bioanalyt. Chem. 414 (2022) 2385.
5. Lee, J.Y.: J. Korean Phys. Soc 82 (2023) 473.
6. Dumiszewska, E.: Crystals 13 (2023) 1539.

Ťapajna, M., Vincze, A., Noga, P., Dobrovodsky, J., Šagátová, A., Hasenöhrl, S., Gregušová, D., and Kuzmík, J.: Determination of secondary-ions yield in SIMS depth profiling of Si, Mg, and C ions implanted GaN epitaxial layers. In: ASDAM 2018. Eds. J. Breza et al. IEEE 2018. ISBN 978-1-5386-7488-8. P. 141-144.

1. Senevirathna, M.K.I.: J. Vacuum Sci Technol. B 38 (2020) 044002.
2. Hajek, F.: J. Lumin. 236 (2021) 118127.
3. Lagzdina, E.: Nuclear Instrum. Methods Phys. Res. B 538 (2023) 218.

Stoklas, R., Gregušová, D., Hasenöhrl, S., Brytavskyi, I.V., Ťapajna, M., Fröhlich, K., Haščík, Š., Gregor, M., and Kuzmík, J.: Characterization of interface states in AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors with HfO2 gate dielectric grown by atomic layer deposition, Applied Surface Sci 461 (2018) 255-259.

1. Ber, E.: IEEE Trans. Electron Dev. 66 (2019) 2100.
2. Zhang, X.-Y.: Nanoscale Res. Lett. 14 (2019) 83.
3. Liu, M.: Chinese Phys. B 29 (‏ 127101(2020.
4. Akkaya, A.: Mater. Today-Proc. 46 (2021) 6939.
5. Mohanty, S.: Applied Phys. Lett. 119 (2021) 042901.
6. Cheng, W.C.: J. Vacuum Sci Technol. B 40 (2022) 022212.
7. Shen, C.X.: Adv. Sci 9 (2022) 2104599.
8. Zhu, X.F.: J. Europ. Ceram. Soc 43 (2023) 4349.
9. Wu, N.T.: Semicond. Sci Technol. 38 (2023) 063002.
10. Wang, B.X.: J. Vacuum Sci Technol. A 42 (2024) 012401.
11. Long, P.X.: Nanotechnol. 35 (2024) 025204.

Novák, J., Laurenčíková, A., Hasenöhrl, S., Eliáš, P., and Kováč, J.:Methanol sensor for integration with GaP nanowire photocathode, Proc. SPIE 10248, Nanotechnology VIII (2017) 102480E.

#       1. Zhao, T.: Lecture Notes in Electr. Engn. 567 (2020) 264.

Novák, J., Laurenčíková, A., Vávra, I., Hasenöhrl, S., and Reiffers, M.: Magnetic properties of InMnAs nanodots prepared by MOVPE, J. Magnetism Magnetic Mater. 327 (2013) 20-23.

1. Bouravleuv, A. D.: Nanotechnol. 27 (2016) 425706.
2. Bouravleuva, A.: J. Crystal Growth 468 (2017) 680.
3. Kodaira, R.: J. Crystal Growth 507 (2019) 241.
#     4. Sanygin, V.P.: Kondensir. Sredy Mezhfaznye Granitsy 23 (2021) 413.
5. Muneta, I.: Sci Rep 12 (2022) 17199.

Laurenčíková, A., Hasenöhrl, S., Eliáš, P., Stoklas, R., Blaho, M., Novotný, I., Križanová, Z., and Novák, J.:Ohmic contacts to p-GaP/n-ZnO core/shell nanowires based on Au metallization. Applied Surface Sci 267 (2013) 60-64.

1. Vidu, R.: Frontiers in Systems Neurosci 8 (2014) 91.
#     2. Opris, I.: In Recent advances on the modular organization of the cortex. Springer 2015 ISBN: 978-94-017-9899-0. P. 339.
3. Jahromi, K.E.: IEEE Electron Device Lett. 37 (2016) 43.
4. Pampaloni, N.P.: Front. Neurosci 12 (2019) 953.

Novák, J., Križanová, Z., Vávra, I., Eliáš, P., Hasenöhrl, S., Laurenčíková, A., Novotný, I., Kováč, J., Šutta, P., and Mikulics, M.: Structural and optical properties of individual GaP/ZnO core-shell nanowires, Vacuum 98 (2013) 106-110.

1. Chee, C.Y.: Ceramics Inter. 40 (2014) 9997.
2. Karunakaran, C.: Powder Technol. 254 (2014) 480.

Hasenöhrl, S., Eliáš, P., Šoltýs, J., Stoklas, R., Laurenčíková, A., and Novák, J.: Zinc-doped gallium phosphide nanowires for photovoltaic structures, Applied Surface Sci 269 (2013) 72-76.

1. Chandiramouli, R.: Mater. Sci Engn. B 194 (2015) 55.
2. Lee, S.: ACS Applied Mater. & Interfaces 8 (2016) 16178.
3. Horley, P.: Physica E 83 (2016) 227.
4. Chen, J.-Y.: CRYSTENGCOMM 19 (2017) 975.
5. Mohammad, R.: Inter. J. Modern Phys. C 28 (2017) Iss. 3.
6. Kim, D.-H.: J. Electronic Mater. 46 (2017) 4750.

Novák, J., Šoltýs, J., Eliáš, P., Hasenöhrl, S., Stoklas, R., Laurenčíková, A., and Mikulics, M.: Electrical and photoluminescence properties of individual GaP nanowires doped by zinc, Phys. Status Solidi a 209 (2012) 2505-2509.

1. Jiang, H.-B.: Chinese Sci Bull. 59 (2014) SI2135.
2. Wallentin, J.: Nano Lett. 14 (2014) 1707.
3. Tomioka, K.: J. Phys. D 47 (2014) SI394001.
4. Liao, G.: Sci Rep. 6 (2016) 28240.

Novák, J., Novotný, I., Kováč, J., Eliáš, P., Hasenöhrl, S., Križanová, Z., Vávra, I., and Stoklas, R.: Preparation of thin Ga-doped ZnO layers for core–shell GaP/ZnO nanowires, Applied Surface Sci 258 (2012) 7607-7611.

1. Jiang, Y.: Phys. Chem. Chem. Phys. 17 (2015) 16784.
2. Mohammad, R.: Physica E 73 (2015) 213.
3. Huang, J.-M.: Phys. Chem. Chem. Phys. 18 (2016) 15251.
4. Belorus, A.O.: IEEE NW Russia Young Researchers in Electr. Electron. Engn. Conf. (2019) 763.

Križanová, Z., Vávra, I., Hasenöhrl, S., Novák, J., : TEM analysis of InMnAs layers and dots prepared by low pressure MOVPE. Vacuum 86 (2012) 657-660.

1. Bouravleuv, A.D.: Semicond. 47 (2013) 1037.
2. Bouravleuv, A.: Applied Phys.Lett. 105 (2014) 232101.
3. Bouravleuv, A.: Physica Status Solidi-Rapid Res. Lett. 10 (2016) 554.

Hasenöhrl, S., Novák, J., Vávra, I., Šoltýs, J., Kučera, M., and Šatka, A.: Epitaxial growth of GaP/InxGa1-xP (xIn ≥ 0,27) virtual substrate for optoelectronic applications, J. Electr. Engn. 62 (2011) 93-98.

1. Shi, B.: J. Applied Phys. 127 (2020) 033102.
2. Turkoglu, A.: Solid State Comm. 334 (2021) 114390.

Novák, J., Telek, P., Vávra, I., Hasenöhrl, S., Reiffers, M., : MOVPE growth and properties of light emitting diodes with an incorporated InMnAs ferromagnetic layer. J. Crystal Growth 315 (2011) 78-81.

1. Dorokhin, M.V.: Solid State Phenomena 190 (2012) 89.
2. Pudis, D.: Applied Surface Sci 269 (2013) 161.

Novák, J., Vávra, I., Hasenöhrl, S., Reiffers, M., Štrichovanec, P., Magen, C., : Role of growth mode in the formation of magnetic properties of InMnAs grown by MOVPE. J. Crystal Growth 318 (2011) 576-579.

       1. Bouravleuva, A.: J. Crystal Growth 468 (2017) 680.

Novák, J., Vávra, I., Križanová, Z., Hasenöhrl, S., Šoltýs, J., Reiffers, M., Štrichovanec, P., : Dependence of Curie temperature on surface strain in InMnAs epitaxial structures. Applied Surface Sci 256 (2010) 5672-5675.

1. Bouravleuv, A.D.: Semicond. 47 (2013) 1037.
2. Bouravleuv, A.: Applied Phys.Lett. 105 (2014) 232101.
3. Bouravleuva, A.: J. Crystal Growth 468 (2017) 680.
4. Marcal, L.A.B.: Phys. Rev. B 96 (2017) 245301.
5. Bernardes, Y.: Phys. Rev. Mater. 7 (2023) 026002.

Novák, J., Šoltýs, J., Eliáš, P., Hasenöhrl, S., Vávra, I., : Study of the growth and structural properties of InMnAs dots grown on high-index surfaces by MOVPE. Mater. Sci Semicond. Proc. 13 (2010) 167-172.

            1. Bouravleuv, A.D.: Semicond. 47 (2013) 1037.

Gregušová, D., Kučera, M., Hasenöhrl, S., Vávra, I., Štrichovanec, P., Martaus, J., Novák, J., : Impact of growth conditions on the spatial non-uniformities of composition in InGaP epitaxial layers. Physica Status Solidi c 4 (2007) 1419-1422.

1. Simon, J.: J. Applied Phys. 109 (2011) 013708.
2. Tomasulo, S.: IEEE J. Photovolt. 2 (2012) 56.

Novák, J., Hasenöhrl, S., Vávra, I., Kučera, M., : Influence of surface strain on the MOVPE growth on InGaP epitaxial layers. Applied Phys. 87 (2007) 511-516.

1. Nakano, T.: J. Crystal Growth 347 (2012) 25.
2. Bittner, Z.: 38th IEEE Photovoltaic Specialists Conf. (2012) 3158.
3. Peng, Y.: Comput. Mater. Sci 123 (2016) 65.
4. Hussain, Z.S.: J. Applied Phys. 119 (2016) 195702.
5. Knijn, P. J.: Phys. Chem. Chem. Phys. 18  (2016) 21296.
6. Gagliano, L.: Nano Lett. 16  (2016) 7930.
7. He, Y.: J. Mater. Sci-Mater. Electron. 30 (2019) 7203.

Novák, J., Hasenöhrl, S., Vávra, I., Sedláčková, K., Kučera, M., and Radnóczi, G.: Role of the V-III ratio and growth rate in decomposition of In0.27Ga0.73P/GaP grown by MOVPE, J. Crystal Growth 298 (2007) 76-80.

1. Park, K.W.: Applied Phys.Lett. 101 (2012) 051903.
2. Lu, X.F.: Mater. Sci Engn. B 284 (2022) 115882.

Peternai, L., Kováč, J., Irmer, G., Hasenöhrl, S., Novák, J., and Srnánek, R.: Investigation of graded InxGa1-xP buffer by Raman scattering method, Microelectr. J. 37 (2006) 487-490.

1. Chen, L.: ACS Nano‏ 14 (2020)‏ 13127.
2. Kuznetsov, A.S.: IEEE Conf. Russian Young Res. Electr. Electron. Engn. – ElConRus 2021, p. 1325.
3. Park, H.: Sci Adv. 8 (2022) l6406.

Vincze, A., Šatka, A., Peternai, L., Kováč, J., Hasenöhrl, S., Veselý, M., : SIMS and SEM analysis of In1-x-yP LED structure grown on In1-xP graded buffer. Applied Surface Sci 252 (2006) 7279-7282.

1. Bouhemadou, A.: Mater. Sci Semicond. Process. 16 (2013) 718.
2. Mohammad, R.: Inter. J. Modern Phys. C 28 (2017) Iss. 3.

Novák, J., Hasenöhrl, S., Vávra, I., Kučera, M., : Spinodal-like decomposition of InGaP epitaxial layers grown on GaP substrates. Applied Surface Sci 252 (2006) 4178-4184.

1. Pastore, C.E.: Applied Surface Sci 256 (2010) 5681.
2. Feldman, E.P.: Phys. Rev. E 89 (2014) 062406.
3. Moskvin, P.P.: J. Phys. Studies ‏ 24 (2020) 1602.

Novák, J., Hasenöhrl, S., Kúdela, R., Kučera, M., : Growth and characterisation of InxGa1-xP layers with composition close to crossover from direct to indirect band gap. J. Crystal Growth 275 (2005) e1281-e1286.

1. Wolos, A.: Spintronics 82 (2008) 325.
2. Kovac, J.: More Than Moore: Creating High Value Micro/Nanoelectr. Systems. Springer 2009. ISBN 0387755926.  P. 203-238.
3. Lankinen, A.: J. Crystal Growth 311 (2009) 4619.
4. Jenichen, A.: Physica Status Solidi B 247 (2010) 59.
5. Nicklas, J.W.: Applied Phys.Lett. 97 (2010) 091902.
6. Norizan, M. N.: IOP Conf. Ser.-Mater. Sci Engn. 209 (2017) 012029.

Hasenöhrl, S., Novák, J., Vávra, I., Šatka, A., : Material properties of graded composition InxGa1−xP buffer layers grown on GaP by organometallic vapor phase epitaxy. J. Crystal Growth 272 (2004) 633-641.

1. Sharma, T.K.: Semicond. Sci Technol. 23 (2008) 075031.
2. Sun, Y.R.: J. Crystal Growth 381 (2013) 70.
#     3. Gillan, E.G.: In Reference Module in Chemistry, Molecular Sci and Chemical Engn. Comprehensive Inorganic Chemistry II (Second Ed.): From Elements to Applications. Elsevier: 2013, Pp 969–1000.
4. Lu, X.F.: Mater. Sci Engn. B 284 (2022) 115882.
5. Wang, J.X.: CRYSTENGCOMM 25 (2023) 2326.

Kicin, S., Kromka, A., Kúdela, R., Hasenöhrl, S., Schwarz, A., Novák, J., : Micro-Raman study of InGaP composition grown on V-grooved substrates. Materials Sci Engn. B 113 (2004) 111-116.

1. Smyth, T.: IEEE J. Photovolt. 6 (2016) 166.
2. Yaccuzzi, E.: J. Phys. D 54 (2021) 115302.

Novák, J., Hasenöhrl, S., Kučera, M., Šoltýs, J., : Nano-patterning surfaces by the self-organized growth of ordered and strained epitaxial layers. Superlatt. Microstruct. 36 (2004) 123-131.

1. Zhou, J.: Microelectr. J. 38 (2007) 1207.
2. Kaiju, H.: Applied Surface Sci 255 (2009) 3706.

Eliáš, P., Kostič, I., Šoltýs, J., Hasenöhrl, S., : Wet-etch bulk micromachining of (100) InP substrates. J. Micromech. Microengn. 14 (2004) 1205–1214.

1. Xu, G.Y.: Applied Phys. Lett. 89 (2006) 161102.
2. Xu, G.Y.: J. Crystal Growth 301-302 (2007) 927.
*         3. Arrioja, D. A. M.: PhD Thesis. Orlando: Univ. Central Florida 2006.
*         4. Lamontagne, B.: Optical waveguides: From Theory to Applied Technologies. Eds. M. L. Calvo,  V. Lakshminarayanan. CRC 2007. ISBN-10: 1-57444-698-3. P. 283.
*         5. Tang, D.: Semicond. Technol. 34 (2009) 543.
*         6. Mounier, M.: PhD Thesis. Sherbrooke: Univ. de Sherbrooke. 2009.
7. Chen, L: IEEE Photonics Technol. Lett. 22 (2010) 890.
8. Wu, W.: ACS Nano 5 (2011) 7488.
9. Andres-Garcia, B.: IEEE Trans. Antennas Propagation 59 (2011) 3164.
10. Yang, H.: Proc. SPIE 8439 (2012) 843925.
*       11. Kaspar, P.: PhD Thesis. Zürich: ETH 2012.
12. Nia, H.I.: ECS Solid State Lett. 2 (2013) P44.
*       13. Garcia, B.A.: PhD Thesis. Madrid: Univ. Carlos III de Madrid. 2013.
14. Kim, S.H.: Nano Lett. 15 (2015) 641.
15. Prinz, V.Y.: Sci Rep. 7 (2017) 43334.
16. Chappell, G.A.: Optical Mater. Express 10 (2020)‏ 3328.
17. Suttijalern, K.: J. Micromech. Microengn. 31 (2021) 085007.

Hasenöhrl, S., Novák, J., Kúdela, R., Betko, J., Morvic, M., Fedor, J., : Anisotropy in transport properties of ordered strained InGaP. J. Crystal Growth 248 (2003) 369.

1. Sigman, M.B.: J. American Chemical Soc. 127 (2005) 10089.
2. Huang R.-R.: Chinese J. Struct. Chem. 34 (2015) 594.
3. Martin, G.: ACS Applied Electron. Mater. 4 (2022) 3478.

Novák, J., Hasenöhrl, S., Kúdela, R., Kučera, M., Alonso, M., Garriga, M., : Influence of ordered and random parts on properties of InGaP alloy grown by MOVPE. In: EW MOVPE X. Univ. Lecce 2003. P. 161.

      1. Zakaria, A.: J. Applied Phys. 108 (2010) 074908.

Hasenöhrl, S., Kúdela, R., Novák, J., Tuomi, T., Knuuttila, L., : Anisotropic surface structure in ordered strained InGaP. Materials Sci Engn. B 88 (2002) 134-138.

#        1. Cao, X.: Jingti Xuebao/J. Synthetic Crystals 39 (2010) 1406.
2. Ye, Z.C.: Trans. Nonferrous Metals Soc China 21 (2011) 146.
3. Kim, T.W.: J. Vacuum Sci Technol. A 35 (2017) 031507.

Novák, J., Hasenöhrl, S., Kúdela, R., Kučera, M., Alonso, M., Garriga, M., : Effect of strain and ordering on the band-gap energy of InGaP. Materials Sci Engn. B 88 (2002) 139-142.

1. Kakumu, T.: Japan. J. Applied Phys. 42 (2003) 2230.
2. Yang, M.D.: Optics Express 16 (2008) 15754.
3. Yang, M.D.: Japan. J. Applied Phys. 47 (2008) 4499.
4. Longo, M.: J. Crystal Growth 311 (2009) 4293.
5. Jakomin, R.: Thin Solid Films 520 (2012) 6619.
6. Sodabanlu, H.: Solar Energy Mater. Solar Cells 257 (2023) 112402.

Eliáš, P., Hasenöhrl, S., Fedor, J., Cambel, V., : Hall bar device processing on patterned substrates using optical lithography. Sensors Actuators A 101 (2002) 150-155.

1. Deen, M.J.: J. Mater. Sci 17 (2006) 549¬57.
2. Sakamoto, N.: JSME Inter. J. Ser. C 49 (2006) 361.
*    3. Deen, J.: Springer Handbook Electr. Photonic Materials. Eds. S. Kasap and P. Capper. Springer 2007. ISBN-13: 978-0-387-26059-4. P. 419.
4. Deen, J.: Springer Handbook of Electronic and Photonic Materials. 2nd ed. Eds. S. Kasap and P. Capper. Springer 2017. ISBN-13: 978-3319489315. P. 453.
5. Wang, Y.: J. Phys.-Energy 3 (2021) 012004.

Eliáš, P., Kostič, I., Hasenöhrl, S., : Polar diagram of wet-etched (100) InP. In: 14th Indium Phosphide and Related Materials Conf. Piscataway: IEEE 2002. ISBN: 1092-8669. P. 229-231.

#     1. Yu, J.: Pan Tao Ti Hsueh Pao/Chinese J. Semicond. 27 (2006) 1732.
#     2. Jinyong, Y.: Proc. 8th Inter. Conf. Solid-State Integr. Circuit Technol. ICSICT-2006. Piscataway: IEEE 2006. P. 872.
#     3. Yu, J.: Pan Tao Ti Hsueh Pao/Chinese J. Semicond. 28 (2007) 154.
*     4. Dummer, M.M.: PhD Thesis. Santa Barbara: Univ. California. (2008) 285 p.
#     5. Yu, J.: J. Semicond. 30 (2009) 114001.
6. Cohen-Elias, D.: 71st Device Res. Conf. IEEE Device Res. Conf. Proc. 2013.
7. Calabretta, N.: J. Optics 20 (2018) 044001.

Novák, J., Hasenöhrl, S., Alonso, M., Garriga, M., : Influence of tensile and compressive strain on the band gap energy of ordered InGaP. Applied Phys. Lett. 79 (2001) 2758-2760.

1. Scardova, S.: Physica Status Solidi A 195 (2003) 50.
2. Kinaci, B.: J. Mater. Sci-Mater. Electron. 24 (2013) 1375.
3. Hussein, M.T.: Indian J. Phys. 87 (2013) 1079.
#     4. Khan, H.A.: IEEE J. Quantum Electron. 50 (2014) 1044.
#     5. Zhang, Y.: European Microwave Week  2014 – EuMW 2014. Art. no. 6986486, p. 524.
#     6. Kahle, H.: In Vertical External Cavity Surface Emitting Lasers: VECSEL Technology and Applications. WILEY‐VCH GmbH 2022, pp. 197-2281.

Kuzmík, J., Hasenöhrl, S., Kúdela, R., Haščík, Š., Mozolová, Ž., Lalinský, T., Breza, J., Vogrinčič, P., Škriniarová, J., Fox, A., and Kordoš, P.: InGaAs/InGaP HEMTs: technological optimization and analytical modelling, Vacuum 61 (2001) 333-337.

      1. Li, A.Z.: J. Crystal Growth 251 (2003) 816.

Eliáš, P., Cambel, V., Hasenöhrl, S., and Kostič, I.: MOCVD growth of InP and InGaAs on InP non-planar substrates patterned with {1 1 0} quasi facets, J. Crystal Growth 233 (2001) 141-149.

       1. Poole, P.J.: J. Crystal Growth 310 (2008)1069.
*     2. Deura, M.: PhD Thesis. Univ. Tokyo 2010.

Kicin, S., Novák, J., Hasenöhrl, S., Kučera, M., and Meertens, D.: Photoluminescence characterization of InGaP/GaAs/InGaP quantum wires, Materials Sci & Engn. B 80 (2001) 184-187.

      1. Kwon, S.: Physical Rev. E 73 (2006) 025102.

Lalinský, T., Škriniarová, J., Kuzmík, J., Hasenöhrl, S., Fox, A., Tomáška, M., Mozolová, Ž., Kordoš, P., Kovačik, T., and Haščík, Š.: Technology and performance of 150 nm gate length InGaP/InGaAs/GaAs pHEMTs, Vacuum 61 (2001) 323-327.

1. Li, A.Z.: J. Crystal Growth 251 (2003) 816.
2. Mil’shtein, S.: Microelectr. J. 40 (2009) 554.

Cambel, V., Karapetrov, G., Eliáš, P., Hasenöhrl, S., Kwok, W., Krause, J., and Maňka, J.: Approaching the pT range with a 2DEG InGaAs/InP Hall sensor at 77 K, Microelectr. Engn. 51-52 (2000) 333-342.

1. Boero, G.: Sensors & Actuators A 106 (2003) 314.
2. Mosser, V.: Proc. SPIE 5115 (2003) 183.
*    3. Li, Y.: PhD Thesis. Florida State Univ. 2003.
4. Popovic, R.: Smart Sensors and MEMS. 2004.
5. Hicks, C.W.: Applied Phys. Lett. 90 (2007) 1333512.
6. Kirtley, J.R.: Reports Progress Phys. 73 (2010) 126501.
*    7. Lipert, K.: Development of a micro-Hall magnetometer and studies of individual Fe – filled carbon nanotubes. PhD Thesis. Heidelberg Univ. 2011.
#     8. Chesnitskiy, A.V.: Russian Microelectr. 45 (2016) 105.
9. Mosser, V.: IEEE Trans. Instrum. Measurement 66 (2017) 637.
10. Alpert, H. S.: IEEE Sensors J. 19 (2019) 3640.
11. Xu, Y.W.: IEEE Sensors J. 22 (2022) 22519.
12. Mostufa, S.: ACS Applied Nano Mater. 6 (2023) 13732.

Attolini, G., Bocchi, C., Germini, F., Pelosi, C., Parisini, A., Tarricone, L., Kúdela, R., and Hasenöhrl, S.: Effects of inhomogeneities and ordering in InGaP/GaAs system grown by MOVPE ,Materials Chemistry & Physics 66 (2000) 246-252.

1. Chiu, H.C.: Solid-State Electron. 49 (2005) 1391.
2. Saly, V.: Renewable Energy 31 (2006) 865.
3. Tsai, J.-H.: Applied Phys. Lett. 106 (2015) 063502.
4. Martin, G.: ACS Applied Electron. Mater. 4 (2022) 3478.
5. Yang, S.Y.: Crystals 13 (2023) 1165.

Kúdela, R., Kučera, M., Olejníková, B., Eliáš, P., Hasenöhrl, S., and Novák, J.: Formation of interfaces in InGaP/GaAs/InGaP quantum wells, J. Crystal Growth 212 (2000) 21-28.

1. Nakano, T.: J. Crystal Growth 221 (2000) 136.
2. Wallart, X.: Applied Phys. Lett. 81 (2002) 1086.
3. Wallart, X.: Phys. Rev. B 68 (2003) 235314.
*    4. Begotti, M.: 10th European Workshop on MOVPE. Lecce 2003.
5. Gladkov, P.: ASDAM 2004. Piscataway: IEEE 2004. P. 17.
6. Oliveira, C.L.N.: Applied Surface Sci 234 (2004) 38.
7. Laureto, E.: Inter. J. Modern Phys. B 18 (2004) 1743.
8. Chang, Y.M.: Applied Phys. Lett. 84 (2004) 2548.
9. Pelosi, C.: Crystal Research Technol. 40 (2005) 982.
10. Ribeiro, E.: Phys. Rev. B 73 (2006) 075330.
11. Pelosi, C.: J. de Physique IV 132 (2006) 205.
12. Zhang, X.B.: J. Electronic Mater. 35 (2006) 705.
13. Bosi, M.: Progress in Photovoltaics 15 (2007) 51.
14. Frigeri, C.: J. Electrochem. Soc. 156 (2009) H448.
15. Frigeri, C.: Superlatt. Microstr. 45 (2009) 451.
16. Silva, A.A.P.: J. Applied Phys. 106 (2009) 083521.
17. Frigeri, C.: Nanoscale Research Lett. 6 (2011) 194.
18. Bender, D.A.: Applied Phys. Lett. 102 (2013) 252102.
19. Wells, N.P.: J. Applied Phys. 118 (2015) 065703.
20. Ladugin, M. A.: Inorganic Mater. 55 (2019) 315.

Mareš, J., Krištofik, J., Hubík, P., Feng, X., Novák, J., and Hasenöhrl, S.: Highly disordered two-dimensional electron systém in a weak magnetic field, Europhys. Lett. 45 (1999) 374-380.

1. Horváth, Zs.J.: Proc. SPIE 4746 (2002) 265.
2. Horváth, Zs.J.: Current Applied Phys. 6 (2006) 205.

Kicin, S., Novák, J., Kučera, M., Hasenöhrl, S., Eliáš, P., Vávra, I., and Hudek, P.: Preparation of stair-step grooves by wet etching of AlAs/GaAs heterostructures and MOCVD growth of QWR, Materials Sci Engn. B 65 (1999) 106-110.

      1. Clawson A.R.: Materials Sci Engn. R 31 (2001) 1.
*    2. Gopal, M.: PhD Thesis. Nat. Univ. Singapore 2008.

Eliáš, P., Cambel, V., Hasenöhrl, S., Hudek, P., and Novák, J.: SEM and AFM characterisation of high MESA patterned InP subtrated prepared by wet etching, Mater. Sci Engn. B 66 (1999) 15-20.

1. Clawson, A.R.: Materials Sci Engn. R 31 (2001) 1.
2. Bandaru, P.: Materials Res. Soc. Symp. – Proc. 782 (2003) 471.
3  Kim, J.-H.: J. Electronic Mater. 37 (2008) 361.

Cambel, V., Kúdela, R., Gregušová, D., Hasenöhrl, S., Eliáš, P., and Novák, J.: Characterization of 2DEG Hall probes in high magnetic field at 4,2K. In: ASDAM 98. Ed. J.Breza. Piscataway: IEEE 1998. P. 31.

          1. Gonzalez-Jorge, H.: Cryogenics 46 (2006) 736.

Cambel, V., Gregušová, D., Eliáš, P., Hasenöhrl, S., Olejníková, B., Novák, J., Schaepers, T., Neurohr, K., and Fox, A.: Characterization of InGaAs/InP microscopic Hall probe arrays with 2DEG active layer, Mater. Sci Engn. B 51 (1998) 188.

1. Bydžovský, J.: Sensors Actuators A 91 (2001) 21.
2. Vavra, I.: Sensors Actuators A 91 (2001) 177.

Hasenöhrl, S., Kučera, M., Novák, J., Bujdák, M., Eliáš, P., and Kúdela, R.: MOCVD growth of InxGa1-xAs/GaAs multiple quantum well and superlattice structures for optical modulators, Solid State Electron. 42 (1998) 263.

     1. Donkor, E.: Semiconductors Semimetals 73 (2001) 15.

Kúdela, R., Olejníková, B., Kučera, M., and Hasenöhrl, S.: MOVPE growth of InGaP/GaAs interfaces. In: HEAD 97. Eds. P. Kordoš et al. NATO ASI Ser. 4/45. Dordrecht: Kluwer Acad. Publ. 1998. P. 123.

     1. Bludska, J.: Czechoslov. J. Phys. 49 (1999) 775.

Mareš, J., Krištofik, J., Hubík, P., Hulicius, E., Melichar, K., Pangrác, J., Novák, J., and Hasenöhrl, S.: Out-of-plane weak localization in two-dimensional electron structures, Phys. Rev. Lett. 80 (1998) 4020.

1. Raichev, O.E.: J. Phys.-Condensed Matter 12 (2000) 589.
2. Shlimak, I.: Phys. Rev. B 61 (2000) 7253.
3. Shlimak, I.: Philos. Magazine B 81 (2001) 1093.
4. Ganichev, S.D.: Phys. Rev. B 63 (2001) 201204.
5. Zumbuhl, D.M.: Phys. Rev. B 69 (2004) Art. No. 121305.
*    6. Zumbuhl, D.M.: PhD Thesis. Massachusetts: Harvard Univ. Cambridge,
(2004).

Novák, J., Hasenöhrl, S., Kúdela, R., and Kučera, M.: Resistivity anisotrophy in ordered InGaP grown at 640 C, Applied Phys. Lett. 73 (1998) 369.

1. Fink, V.: Applied Phys. Lett. 79 (2001) 2384.
2. Li, J.H.: Phys. Rev. B 63 (2001) 155310.
3. Jakomin, R.: Thin Solid Films 520 (2012) 6619.
4. Martin, G.: ACS Applied Electron. Mater. 4 (2022) 3478.

Novák, J., Hasenöhrl, S., Kučera, M., Hjelt, K., and Tuomi, T.: Sulphur doping of GaSb grown by atmospheric pressure MOVPE, J. Crystal Growth 183 (1998) 69.

1. Wiersma, R.D.: Phys. Rev. B 67 (2003) 165202.
2. Han, F.: Chem. Phys. Lett. 651 (2016) 183.

Kováč, P., Cambel, V., Gregušová, D., Eliáš, P., Hušek, I., Kúdela, R., Hasenöhrl, S., and Ďurica, M.: Testing of homogenity of Bi(2223)/Ag tapes by Hall probe array, IoP Conf. Series No. 158 (1997) 1311.

1. Gomory, F.: Physica C 308 (1998) 203.
2. Schauer, W.: Proc. 9th CIMTEC. Florence 1998. P. 436
3. Herrmann, J.:  IEEE Trans. Applied Supercond. 9 (1999) 1824.
4. Lehndorff, B.R.: Springer Trans. Modern Phys. 171 (2001) 1.
5. Bydžovský, J.: Sensors Actuators A 91 (2001) 21.

Kováč, J., Uherek, F., Šatka, A., Waclawek, J., Jakabovič, J., Srnánek, R., Rheinländer, B., Gottschalch, V.,Hasenöhrl, S., Novák, J., Barna, A., and Wood, J.: InAlGaAS-InGaAs-InP RCE PIN Photodiode for 1300nm wavelength region. In: 8th Inter. Conf. Indium Phosphide Related Materials – IPRM ’96. Ed. J.Lorenzo. Piscataway: IEEE 1996. P. 219.

#     1. Jervase, J.A.: IEEE J. Quantum Electronics 36 (2000) 325.
#     2. El-Batawy, Y.M.: Proc. SPIE 4999 (2003) 363.
#     3. El-Batawy, Y.: In Photodetectors. Woodhead Publ. 2016. ISBN: 978-1-78242-445-1. P. 415-470.

Hasenöhrl, S., Hardtdegen, H., Ungermanns, C., : MOCVD growth of GaAs, AlAs an InP using H2/N2 ambient mixturees. In: 6th Europ. Workshop MOVPE and Related Growth Techn. Gent: 1995 D-12..

        1. Schon, O.: J. Crystal Growth 190 (1998) 335.

Hardtdegen, H., Ungermanns, C., Hollfelder, M., Raafat, T., Carius, R., Hasenöhrl, S., and Lüth, H.: A new approach towards low-pressure metalorganic vapor phase epitaxy of (AlGa)As using triethylgallium and dimethylethylaminealane, J. Crystal Growth 145 (1994) 478-484.

1. Watanabe, N.: Japan. Applied Phys. 34 (1995) L473.
2. Werner, P.: Applied Phys. Lett. 69 (1996) 409.
3. Pautet, C.: Applied Phys. Lett. 69 (1996) 209.
4. Schafer, P.: Advanced Mater. Optic Electr. 10 (2000) 169.
5. Keiper, D.: J. Crystal Growth 233 (2001) 121.
6. Keiper, D.: J. Crystal Growth 233 (2001) 126.
7. Su, X.: AIP Adv. 8 (2018) 075301.

Hjelt, K., Sopanen, M., Lipsanen, H., Tuomi, T., and Hasenöhrl, S.: The effect of praseodymium dioxide on the optical properties of LPE-grown InGaAsP layers. In: Optoelectr. Lab. Annual Report. Helsinki: Univ. Technol. 1992. P. 26.

1. Jiang, G.C.: Crystal Res. Technol. 31 (1996) 365.
2. Jiang, G.C.: Japan. J. Applied Phys. 1 35 (1996) 2020.

Novák, J., Hasenöhrl, S., and Kuliffayová, M.: Gettering properties of PrO2 in In0.53Ga0.47As LPE growth, J. Crystal Growth 110 (1991) 862.

1. Wu, M.-CH.: Japan. J. Applied Phys. 30 (1991) 2679.
2. Lai, M.Z.: J. Applied Phys. 72 (1992) 1312.
3. Amano, T.: Japan. J. Applied Phys. 31 (1992) 2185.
4. Wu, M.C.: J. J. Applied Phys. 71 (1992) 456.
5. Yamaguchi, T.: Japan. J. Applied Phys. 1 32 (1993) Suppl 664.
6. Wu, M.C.: Japan. J. Applied Phys. 32 (1993) 2587.
7. Wu, M.C.: J. Crystal Growth 139 (1994) 251.
8. Jiang, G.C.: J. Crystal Growth 152 (1995) 127.
9. Lai, M.Z.: Crystal Res. Technology 30 (1995) 433.
10. Ho, W.J.: IEEE Trans. Electron Dev. 42 (1995) 639.
11. Choi, S.J.: J. Korean Phys. Soc 28 (1995) S145.
12. Jiang, G.C.: Cryst. Res. Tech. 31 (1996) 365-371.
13. Jiang. G.C.: Japan. J. Applied Phys. 35 (1996) 2020-2024.
14. Chang. L.B.: Cryst. Res. Tech. 31 (1996) 911-915.
15. Chang, L.B.: IoP Conf. Ser. I 155 (1997) 291.
*   16. Hjelt K.  Photoluminescence  and  growth of  compound semi-condutors, Espoo, 1997.
17. Chang L.B.: Japan. J. Appl. Phys. 36 (1997) 7264.
18. Chang L.B.: Japan. J. Appl. Phys. 36 (1998) 811.
19. Chang, L.B.: J. Crystal Growth 199 (1999) 1092.
20. Cheng, Y.C.: Microelectr. Engn. 65 (2003) 223.
#   21. Procházková, O.: Physica Status Solidi C 2 (2005) 1269.
22. Hassan, M.: Central Europ. J. Phys. 4 (2006) 117.