Prednášky

  • 2023

Kurz: Electronic structure of graphene and boron nitride, relativistic analogies with Dirac equation

Prednášajú: A. Mošková, M. Moško

Structure of graphene: Carbon atom and its sp2 hybridisation, crystal structure of graphene, honeycomb lattice, reciprocal lattice, Brilloin zone, K points.

Electronic spectra of graphene: Tight-Binding Model for Electrons on Honeycomb Lattice: Bloch’s theorem, lattice with two atoms per unit cell, solution  within nearest-neighbour  hopping. Continuum limit : energy spectrum near K points, effective 2D Dirac equation for relativistic massles fermions, eigenstates of the effective 2D Dirac equation. Tight-binding model for boron nitride – effective 2D Dirac equation for relativistic massive fermions.

Statistics of electrons and holes in graphene: carrier concentration, conductivity from Boltzmann transport equation.

Dirac equation for relativistic fermions: Relativistic Schrodinger/Klein-Gordon equation, Dirac equation, eigen-states and eigen-energies in Dirac-Pauli  representation and Weyl representation, nonrelativistic limit – appearance of electron spin. Dirac equation for massless particles.

Relativistic analogies: Effective 2D Dirac equation for electrons in graphene and boron nitride, analogy with Dirac equations for massless and massive fermions.

  • 2021

Kurz Methods for Materials Diagnostics 2021-22 je určený pre doktorandky a doktorandov všetkých študijných programov a bude vedený v angličtine.
Viac informácií.

Kontakt: Ing. Milan Ťapajna, PhD.

Syllabus:

Structure of materials and X-ray diffraction analysis (E. Dobročka)

1. Introduction. Non-crystalline state. Hard-Sphere models, Random-Walk models, Fractal models. [Download_Lecture1], [Download_Lecture2]
2. Crystalline state. Symmetry, symmetry operations, space lattice, unit cell, primitive cell. Miller indices, crystallographic symbols. Crystallography in two dimensions [Download_Lecture3].
Crystallography in three dimensions. Crystal systems, Bravais lattices, point groups, space groups [Download_Lecture4].
3. Symmetry and the properties of crystals [Download_Lecture5]. Neumann, Curie and Voigt principles.
Examples of structures. Imperfections in crystals and their experimental observation. Point defects, dislocations, stacking faults. [Download_Lecture6]
4. Diffraction methods. Laue equations, reciprocal lattice, Ewald construction, Bragg equation. Diffraction indices, atomic form factor, structure factor, intensity of diffracted radiation [Download_Lecture7].
5. Basic X-ray diffraction experiments, Debye-Scherrer method, Laue method, X-ray diffractometry. Bragg-Brentano set-up, double axis and triple axis diffractometry. [Download_Lecture8], [Download_Lecture9]
Imaging methods, X-ray topography.

Scanning electron microscopy – SEM (J. Šoltýs)

6. Design and basic principle of electron microscopes (SEM), interaction of electron with sample surface. Types of SEM and its regimes, sample preparation, image adjustment and optimization. Additional options for SEM. Electron beam lithography.

Elemental analysis using characteristic X-rays in SEM – EDS a WDS (A. Rosová)

7. Characteristic X-ray emission, beam interaction volume, EDS and WDS – principles and comparison, measurement artefacts and errors, resolution and sensitivity, choice of optimized experiment parameters, qualitative and quantitative analysis, ZAF method, thin film analysis. [Download]

Transmission electron microscopy – TEM (A. Rosová)

8. Why TEM – resolution, aberrations, advantages and limits. Elastic and inelastic electron interactions in thin foils, kinematical theory of electron diffraction, information from selected area electron diffraction patterns, creation of imaging contrasts, different imaging techniques, elemental analysis in TEM, Thin specimen preparation. [Download]

Scanning probe microscopy – SPM (J. Šoltýs)

9. STM and AFM principle, basic modes, hardware, AFM probes, data processing.  non-topographic modes, artefacts in AFM images. AFM surface modification and lithography.

Electrical characterization of semiconductor structures (M. Ťapajna)

10. Introduction to semiconductors. PN junction in the equilibrium, IV characteristic, secondary effects (generation-recombination, strong injection, breakdown). Analysis of CV characteristics, measurement of built-in potential, carrier concentration profiling in abrupt PN junctions. Determination of minority carrier lifetime. [Download_Lecture9]
11. Schottky contact, transport properties, IV characteristic, CV characteristic, carrier concentration profiling. Review of models describing Metal-Semiconductor contact (non-interacting, interacting, concept of charge neutrality level). Ohmic contacts characterisation. [Download_Lecture10]
12. MOS structure, depletion approximation, ‘ideal’ and real MOS structure, CV curve. Measurement of the metal work function and fixed oxide charge. Review of methods for evaluation of oxide/semiconductor interface states density.

  • 2019

Kurz Methods for Materials Diagnostics 2019-20 je určený pre doktorandky a doktorandov všetkých študijných programov a bude vedený v angličtine.
Viac informácií.

Kontakt: Ing. Milan Ťapajna, PhD.

Syllabus:

Structure of materials and X-ray diffraction analysis (E. Dobročka)

1. Introduction. Non-crystalline state. Hard-Sphere models, Random-Walk models, Fractal models. [Download]
2. Crystalline state. Symmetry, symmetry operations, space lattice, unit cell, primitive cell. Miller indices, crystallographic symbols. Crystallography in two dimensions. [Download] [Download_Lecture3]
Crystallography in three dimensions. Crystal systems, Bravais lattices, point groups, space groups. [Download_Lecture4] [Download_Manual]
3. Symmetry and the properties of crystals. Neumann, Curie and Voigt principles.
Examples of structures. Imperfections in crystals and their experimental observation. Point defects, dislocations, stacking faults. [Download Lecture5] [Download Lecture6]
4. Diffraction methods. Laue equations, reciprocal lattice, Ewald construction, Bragg equation. Diffraction indices, atomic form factor, structure factor, intensity of diffracted radiation. [Download Lecture7]
5. Basic X-ray diffraction experiments, Debye-Scherrer method, Laue method, X-ray diffractometry. Bragg-Brentano set-up, double axis and triple axis diffractometry.
Imaging methods, X-ray topography. [Download Lecture8]

Electrical characterization of semiconductor structures (M. Ťapajna)

6. Introduction to semiconductors. PN junction in the equilibrium, IV characteristic, secondary effects (generation-recombination, strong injection, breakdown). Analysis of CV characteristics, measurement of built-in potential, carrier concentration profiling in abrupt PN junctions. Determination of minority carrier lifetime. [Download]
7. Schottky contact, transport properties, IV characteristic, CV characteristic, carrier concentration profiling. Review of models describing Metal-Semiconductor contact (non-interacting, interacting, concept of charge neutrality level). Ohmic contacts characterisation. [Download Lecture10]
8. MOS structure, depletion approximation, ‘ideal’ and real MOS structure, CV curve.
Measurement of the metal work function and fixed oxide charge. Review of methods for evaluation of oxide/semiconductor interface states density.[Download Lecture11]

Scanning electron microscopy – SEM (J. Šoltýs)

9. Design and basic principle of electron microscopes (SEM), interaction of electron with sample surface. Types of SEM and its regimes, sample preparation, image adjustment and optimization. Additional options for SEM. Electron beam lithography. [Download Lecture12]

Elemental analysis using characteristic X-rays in SEM – EDS a WDS (A. Rosová)

10. Characteristic X-ray emission, beam interaction volume, EDS and WDS – principles and comparison, measurement artefacts and errors, resolution and sensitivity, choice of optimized experiment parameters, qualitative and quantitative analysis, ZAF method, thin film analysis. [Download Lecture13]

Transmission electron microscopy – TEM (A. Rosová)

11. Why TEM – resolution, aberrations, advantages and limits. Elastic and inelastic electron interactions in thin foils, kinematical theory of electron diffraction, information from selected area electron diffraction patterns, creation of imaging contrasts, different imaging techniques, elemental analysis in TEM, Thin specimen preparation. [Download Lecture14]

Scanning probe microscopy – SPM (J. Šoltýs)

12. STM and AFM principle, basic modes, hardware, AFM probes, data processing nontopographic modes, artefacts in AFM images. AFM surface modification and lithography.

  • 2018

V rámci doktorandského štúdia ponúka ElÚ SAV v školskom roku 2018/19 nasledovné prednáškové kurzy:

Selected chapters from statistical physics and solid-state physics

  • 2017

V rámci doktorandského štúdia ponúkal ElÚ SAV v školskom roku 2017/18 nasledovné prednáškové kurzy:

Kurz: Metódy diagnostiky materiálov
Prednášajúci: RNDr. E. Dobročka, CSc., Ing. A. Rosová, CSc., Ing. J. Šoltýs, PhD. a Ing. M. Ťapajna, PhD.
Termín kurzu: Zimný semester

Kurz: Vybrané kapitoly z fyziky pevných látok a kvantovej elektroniky
Prednášajúci: RNDr. M. Moško, DrSc.
Termín kurzu: Letný semester
Prednášky prebiehajú týždenne v 4-hodinových blokoch doobeda podľa vopred stanoveného rozpisu. Vítaní sú všetci záujmci, najmä však PhD študenti.

ElÚ SAV ďalej ponúka prípravu praktík (cvičení) pre študentov VŠ v študijnom odbore elektronika, elektrotechnika, fyzika tuhých látok a pod. Praktikum prebieha počas semestra, týždenne v 2- až 4-hodinových blokoch. Pre menšie skupiny (15) študentov je zabezpečený prístup do čistých priestorov a ostatných laboratórií ElÚ SAV. Pri praktickom cvičení si študenti osvoja planárnu technológiu, praktické využitie diagnostických metód a elektrických meraní.

Ďalšie informácie: RNDr. Marianna Španková, PhD., vedecká tajomníčka ústavu