Xiao, X., Mao, Y., Meng, B., Ma, G., Hušeková, K., Egyenes, F., Rosová, A., Dobročka, E., Eliáš, P., Ťapajna, M., Gucmann, F., and Yuan, C.: Phase-dependent phonon heat transport in nanoscale gallium oxide thin films, Small 20 (2024) 2309961.
1. Yan, S.H.: Applied Phys. Lett. 125 (2024) 022202.
Novák, J., Laurenčíková, A., Eliáš, P., Hasenöhrl, S., Sojková, M., Kováč, J.jr., and Kováč, J.: Investigation of a nanostructured GaP/MoS2 p-n heterojunction photodiode, AIP Adv. 12 (2022) 065004.
1. Late, D.: AIP Adv. 12 (2022) 110401.
Novák, J., Eliáš, P., Hasenöhrl, S., Laurenčíková, A., Kováč, J.jr., Urbancová, P., and Pudiš, D.: Twinned nanoparticle structures for surface enhanced Raman scattering, Applied Surface Sci 528 (2020) 146548.
1. Dumiszewska, E.: Crystals 13 (2023) 1539.
Laurenčíková, A., Eliáš, P., Hasenöhrl, S., Kováč, J.jr., Szobolovszký, R., and Novák, J.: GaP nanocones covered with silver nanoparticles for surface-enhanced Raman spectroscopy, Applied Surface Sci 461 (2018) 149-153.
1. Zeng, Y.: Applied Surface Sci 544 (2021) 148924.
2. Liu, Y.: Mater. Horizons 8 (2021) 370.
3. Ge, K.: Sensors Actuators B 361 (2022) 131734.
4. Ge, K.: Analyt. Bioanalyt. Chem. 414 (2022) 2385.
5. Lee, J.Y.: J. Korean Phys. Soc 82 (2023) 473.
6. Dumiszewska, E.: Crystals 13 (2023) 1539.
Novák, J., Laurenčíková, A., Eliáš, P., Hasenöhrl, S., Sojková, M., Dobročka, E., Kováč, J.jr., Kováč, J., Ďurišová, J., and Pudiš, D.: Nanorods and nanocones for advanced sensor applications, Applied Surface Sci 461 (2018) 61-65.
1. Rajkumar, C.: Results in Phys. 15 (2019) 102647.
2. Rajkumar, C.: Vacuum 168 (2019) UNSP 108856.
3. Chen, Y.: Adv. Mater. 32 (2021) 2001668.
4. Dumiszewska, E.: Crystals 13 (2023) 1539.
Novák, J., Laurenčíková, A., Hasenöhrl, S., Eliáš, P., and Kováč, J.:Methanol sensor for integration with GaP nanowire photocathode, Proc. SPIE 10248, Nanotechnology VIII (2017) 102480E.
# 1. Zhao, T.: Lecture Notes in Electr. Engn. 567 (2020) 264.
Laurenčíková, A., Hasenöhrl, S., Eliáš, P., Stoklas, R., Blaho, M., Novotný, I., Križanová, Z., and Novák, J.: Ohmic contacts to p-GaP/n-ZnO core/shell nanowires based on Au metallization. Applied Surface Sci 267 (2013) 60-64.
1. Vidu, R.: Frontiers in Systems Neurosci 8 (2014) 91.
# 2. Opris, I.: In Recent advances on the modular organization of the cortex. Springer 2015 ISBN: 978-94-017-9899-0. P. 339.
3. Jahromi, K.E.: IEEE Electron Device Lett. 37 (2016) 43.
4. Pampaloni, N.P.: Front. Neurosci 12 (2019) 953.
Novák, J., Križanová, Z., Vávra, I., Eliáš, P., Hasenöhrl, S., Laurenčíková, A., Novotný, I., Kováč, J., Šutta, P., and Mikulics, M.: Structural and optical properties of individual GaP/ZnO core-shell nanowires. Vacuum 98 (2013) 106-110.
1. Chee, C.Y.: Ceramics Inter. 40 (2014) 9997.
2. Karunakaran, C.: Powder Technol. 254 (2014) 480.
Hasenöhrl, S., Eliáš, P., Šoltýs, J., Stoklas, R., Laurenčíková, A., Novák, J., : Zinc-doped gallium phosphide nanowires for photovoltaic structures,. Applied Surface Sci 269 (2013) 72-76.
1. Chandiramouli, R.: Mater. Sci Engn. B 194 (2015) 55.
2. Lee, S.: ACS Applied Mater. & Interfaces 8 (2016) 16178.
3. Horley, P.: Physica E 83 (2016) 227.
4. Chen, J.-Y.: CRYSTENGCOMM 19 (2017) 975.
5. Mohammad, R.: Inter. J. Modern Phys. C 28 (2017) Iss. 3.
6. Kim, D.-H.: J. Electronic Mater. 46 (2017) 4750.
Novák, J., Šoltýs, J., Eliáš, P., Hasenöhrl, S., Stoklas, R., Laurenčíková, A., and Mikulics, M.: Electrical and photoluminescence properties of individual GaP nanowires doped by zinc Phys. Status Solidi a 209 (2012) 2505-2509.
1. Jiang, H.-B.: Chinese Sci Bull. 59 (2014) SI2135.
2. Wallentin, J.: Nano Lett. 14 (2014) 1707.
3. Tomioka, K.: J. Phys. D 47 (2014) SI394001.
4. Liao, G.: Sci Rep. 6 (2016) 28240.
Novák, J., Novotný, I., Kováč, J., Eliáš, P., Hasenöhrl, S., Križanová, Z., Vávra, I., and Stoklas, R.: Preparation of thin Ga-doped ZnO layers for core–shell GaP/ZnO nanowires. Applied Surface Sci 258 (2012) 7607-7611.
1. Jiang, Y.: Phys. Chem. Chem. Phys. 17 (2015) 16784.
2. Mohammad, R.: Physica E 73 (2015) 213.
3. Huang, J.-M.: Phys. Chem. Chem. Phys. 18 (2016) 15251.
4. Belorus, A.O.: IEEE NW Russia Young Researchers in Electr. Electron. Engn. Conf. (2019) 763.
Fröhlich, K., Hudec, B., Ťapajna, M., Hušeková, K., Rosová, A., Eliáš, P., Aarik, J., Rammula, R., Kasikov, A., Arroval, T., Aarik, L., Murakami, K., Rommel, M., and Bauer, A.: TiO2-based metal-insulator-metal structures for future DRAM storage capacitors ECS Transactions 50 (2012) 79-87.
# 1. Schroeder, U.: In Thin Films on Silicon: Electronic and Photonic Appl. 8 (2016) 369.
# 2. Pešić, M.: J. Applied Phys. 119 (2016) 064101.
3. Austin, D.Z.: Chem. Mater.29 (2017) 1107.
4. Niemela, Janne-P.: Semicond. Sci Technol. 32 (2017) 093005.
5. Kozodaev, M.G.: J. Chem. Phys. 151 (2019) 204701.
6. Khalili, S.: Applied Phys. A 125 (2019) 661.
7. Maier, F.J.: J. Phys. Conf. Ser. 1837 (2021) 012009.
8. Hayes, M.: J. Vacuum Sci Technol. A 39 (2020) 052402.
9. Schneider, J.R.: Small 18 (2022) 2105513.
10. Lee, J.H.: Vacuum 220 (2024) 112776.
Cambel, V., Gregušová, D., Eliáš, P., Fedor, J., Kostič, I., Maňka, J., Ballo, P., : Switching magnetization magnetic force microscopy – an alternative to conventional lift-mode MFM, J. Electr. Engn. 62 (2011) 37-43.
1. Sandu, S.G.: Mater. Sci Engn. B 181 (2014) 24.
2. Angeloni, L.: Sci Rep. 6 (2016) 26293.
3. Angeloni, L.: Nanoscale 9 (2017) 18000.
# 4. Passeri, D.: In: Magnetic Characterization Techniques for Nanomaterials. Springer 2017 ISBN 978-3-662-52779-5, pp. 209-259.
5. Kazakova, O.: J. Applied Phys. 125 (2019) 060901.
6. Corte-Leon, H.: Nanoscale 11 (2019) 4478.
7. Stanciu, A.E.: J. Magnetism Magnet. Mater. 498 (2020) 166173.
8. Moldovan, A.: Applied Surface Sci 597 (2022) 53747.
9. Josten, N.: Phys. Rev. Mater. 7 (2023) 124411.
Cambel, V., Eliáš, P., Gregušová, D., Martaus, J., Fedor, J., Karapetrov, G., and Novosad, V.: Magnetic elements for switching magnetization magnetic force microscopy tips, J. Magnetism Magn. Mater. 322 (2010) 2715-2721.
1. Ishihara, S.: EPJ 40 (2012) UNSP 08003.
2. Kaidatzis, A.: Nanotechnol. 24 (2013) 165704.
3. Klapetek, P.: Quantitative data processing in scanning probe microscopy: SPM applications for nanometrology. Elsevier Sci 2013. ISBN 978-1455730582. P. 207-219.
4. Angeloni, L.: Sci Rep. 6 (2016) 26293.
5. Chen, S.-H.: Microscopy Research Techniq. 79 (2016) 917.
6. Wren, T.: Ultramicroscopy 179 (2017) 41.
7. Datar, A.A.: J. Phys. D 50 (2017) 485004.
8. Liu, J.: J. Magnetism Magn. Mater. 443 (2017) 184.
9. Liu, J.: Micron 102 (2017) 15.|
# 10. Passeri, D.: In: Magnetic Characterization Techniques for Nanomaterials. Springer 2017 ISBN 978-3-662-52779-5, pp. 209-259.
11. Klapetek, P.: Quantitative data processing in scanning probe microscopy: SPM applications for nanometrology. 2nd ed. Elsevier 2018. ISBN: 978-012813348-4. P. 245-263.
Cambel, V., Eliáš, P., Gregušová, D., Fedor, J., Martaus, J., Karapetrov, G., Novosad, V., Kostič, I., : Novel magnetic tips developed for the switching magnetization magnetic force microscopy. J. Nanosci Nanotechnol. 10 (2010) 4477-4481.
1. Choi, E.: J. Nanosci Nanotechnol. 14 (2014) 924.
2. Liu, J.: Micron 102 (2017) 15.
Novák, J., Šoltýs, J., Eliáš, P., Hasenöhrl, S., Vávra, I., : Study of the growth and structural properties of InMnAs dots grown on high-index surfaces by MOVPE. Mater. Sci Semicond. Proc. 13 (2010) 167-172.
1. Bouravleuv, A.D.: Semicond. 47 (2013) 1037.
Šoltýs, J., Cambel, V., Kúdela, R., Eliáš, P., : Study into the shape of oxide lines formed by LAO – influence an oxidized material. Surface Sci 601 (2007) 2876-2880.
1. Kim, T.Y.: Surface Sci 601 (2007) 4910.
Haščík, Š., Eliáš, P., Šoltýs, J., Martaus, J., Hotový, I., : CCl4-based reactive ion etching of semi-insulating GaAs and InP. Czechoslov. J. Phys. B 56 (2006) S1169-S1173.
1.Venugopal, V.: Surface Sci 602 (2008) 3000.
2. Park, Y.H.: Microelectr. Engn. 87 (2010) 548.
3. Lee, J.W.: Thin Solid Films 518 (2010) 6488.
Eliáš, P., Gregušová, D., Martaus, J., Kostič, I., : Conformal AZ5214-E resist deposition on patterned (1 0 0) InP substrates. J. Micromech. Microengn. 16 (2006) 191–197.
1. Andok, R.: J. Electrical Engn. 64 (2013) 371.
* 2. Škriniarová, J.: Vacuum 111 (2015) 5.
* 3. Sečianska, K.: APCOM 2015. P. 189-193.
Eliáš, P., Štrichovanec, P., Kostič, I., and Novák, J.: Conformal, planarizing and bridging AZ5214-E layers deposited by a ‚draping‘ technique on non-planar III–V substrates, J. Micromech. Microengn. 16 (2006) 2608–2617.
1. Andok, R.: J. Electrical Engn. 64 (2013) 371.
2. Škriniarová, J.: Vacuum 111 (2015) 5.
3. Shin, S.-H.: Nanoscale 10 (2018) 20995.
Eliáš, P., Gregušová, D., Štrichovanec, P., Kostič, I., Novák, J., : Deposition of AZ5214-E layers on non-planar substrates with a “draping” technique. In: ASDAM 2006. Eds. J. Breza et al. Piscataway: IEEE 2006. ISBN: 1-4244-0396-0. P. 97-100.
1. Andok, R.: J. Electrical Engn. 64 (2013) 371.
2. Saller, K.B.: J. Vacuum Sci Technol. B 37 (2019) 040602.
Gregušová, D., Eliáš, P., Öszi, Z., Kúdela, R., Šoltýs, J., Fedor, J., Cambel, V., Kostič, I., : Technology and properties of a vector hall sensor. Microelectronics J. 37 (2006) 1543-1546.
# 1.Rybak, M.: Przeglad Wlokienniczy 61 (2007) 39.
2. Dai, C.-L.: Microelectronics J. 39 (2008) 744.
3. Peters, V.: IEEE Trans. Magn. 49 (2013) 109.
4. Dede, M.: Applied Phys. Lett. 109 (2016) 182407.
Eliáš, P., Martaus, J., Šoltýs, J., Kostič, I., : Micromachining of mesa and pyramidal-shaped objects in (1 0 0) InP substrates. J. Micromech. Microengn. 15 (2005) 1007-1014.
* 1. Siwak, N.P.: PhD Thesis. Univ. Maryland 2007.
2. Chappell, G.A.: Optical Mater. Express 10 (2020) 3328.
3. Suttijalern, K.: J. Micromech. Microengn. 31 (2021) 085007.
Eliáš, P., Kostič, I., Šoltýs, J., Hasenöhrl, S., : Wet-etch bulk micromachining of (100) InP substrates. J. Micromech. Microengn. 14 (2004) 1205–1214.
1. Xu, G.Y.: Applied Phys. Lett. 89 (2006) 161102.
2. Xu, G.Y.: J. Crystal Growth 301-302 (2007) 927.
* 3. Arrioja, D. A. M.: PhD Thesis. Orlando: Univ. Central Florida 2006.
* 4. Lamontagne, B.: Optical waveguides: From Theory to Applied Technologies. Eds. M. L. Calvo, V. Lakshminarayanan. CRC 2007. ISBN-10: 1-57444-698-3. P. 283.
* 5. Tang, D.: Semicond. Technol. 34 (2009) 543.
* 6. Mounier, M.: PhD Thesis. Sherbrooke: Univ. de Sherbrooke. 2009.
7. Chen, L: IEEE Photonics Technol. Lett. 22 (2010) 890.
8. Wu, W.: ACS Nano 5 (2011) 7488.
9. Andres-Garcia, B.: IEEE Trans. Antennas Propagation 59 (2011) 3164.
10. Yang, H.: Proc. SPIE 8439 (2012) 843925.
* 11. Kaspar, P.: PhD Thesis. Zürich: ETH 2012.
12. Nia, H.I.: ECS Solid State Lett. 2 (2013) P44.
* 13. Garcia, B.A.: PhD Thesis. Madrid: Univ. Carlos III de Madrid. 2013.
14. Kim, S.H.: Nano Lett. 15 (2015) 641.
15. Prinz, V.Y.: Sci Rep. 7 (2017) 43334.
16. Chappell, G.A.: Optical Mater. Express 10 (2020) 3328.
17. Suttijalern, K.: J. Micromech. Microengn. 31 (2021) 085007.
Eliáš, P., Hasenöhrl, S., Fedor, J., Cambel, V., : Hall bar device processing on patterned substrates using optical lithography. Sensors Actuators A 101 (2002) 150-155.
1. Deen, M.J.: J. Mater. Sci 17 (2006) 549¬57.
2. Sakamoto, N.: JSME Inter. J. Ser. C 49 (2006) 361.
* 3. Deen, J.: Springer Handbook Electr. Photonic Materials. Eds. S. Kasap and P. Capper. Springer 2007. ISBN-13: 978-0-387-26059-4. P. 419.
4. Deen, J.: Springer Handbook of Electronic and Photonic Materials. 2nd ed. Eds. S. Kasap and P. Capper. Springer 2017. ISBN-13: 978-3319489315. P. 453.
5. Wang, Y.: J. Phys.-Energy 3 (2021) 012004.
Eliáš, P., Kostič, I., Hasenöhrl, S., : Polar diagram of wet-etched (100) InP. In: 14th Indium Phosphide and Related Materials Conf. Piscataway: IEEE 2002. ISBN: 1092-8669. P. 229-231.
# 1. Yu, J.: Pan Tao Ti Hsueh Pao/Chinese J. Semicond. 27 (2006) 1732.
# 2. Jinyong, Y.: Proc. 8th Inter. Conf. Solid-State Integr. Circuit Technol. ICSICT-2006. Piscataway: IEEE 2006. P. 872.
# 3. Yu, J.: Pan Tao Ti Hsueh Pao/Chinese J. Semicond. 28 (2007) 154.
* 4. Dummer, M.M.: PhD Thesis. Santa Barbara: Univ. California. (2008) 285 p.
# 5. Yu, J.: J. Semicond. 30 (2009) 114001.
6. Cohen-Elias, D.: 71st Device Res. Conf. IEEE Device Res. Conf. Proc. 2013.
7. Calabretta, N.: J. Optics 20 (2018) 044001.
Eliáš, P., Cambel, V., Hasenöhrl, S., Kostič, I., : MOCVD growth of InP and InGaAs on InP non-planar substrates patterned with {1 1 0} quasi facets. J. Crystal Growth 233 (2001) 141-149.
1. Poole, P.J.: J. Crystal Growth 310 (2008)1069.
* 2. Deura, M.: PhD Thesis. Univ. Tokyo 2010.
Cambel, V., Karapetrov, G., Eliáš, P., Hasenöhrl, S., Kwok, W., Krause, J., Maňka, J., : Approaching the pT range with a 2DEG InGaAs/InP Hall sensor at 77 K. Microelectr. Engn. 51-52 (2000) 333-342.
1. Boero, G.: Sensors & Actuators A 106 (2003) 314.
2. Mosser, V.: Proc. SPIE 5115 (2003) 183.
* 3. Li, Y.: PhD Thesis. Florida State Univ. 2003.
4. Popovic, R.: Smart Sensors and MEMS. 2004.
5. Hicks, C.W.: Applied Phys. Lett. 90 (2007) 1333512.
6. Kirtley, J.R.: Reports Progress Phys. 73 (2010) 126501.
* 7. Lipert, K.: Development of a micro-Hall magnetometer and studies of individual Fe – filled carbon nanotubes. PhD Thesis. Heidelberg Univ. 2011.
# 8. Chesnitskiy, A.V.: Russian Microelectr. 45 (2016) 105.
9. Mosser, V.: IEEE Trans. Instrum. Measurement 66 (2017) 637.
10. Alpert, H. S.: IEEE Sensors J. 19 (2019) 3640.
11. Xu, Y.W.: IEEE Sensors J. 22 (2022) 22519.
12. Mostufa, S.: ACS Applied Nano Mater. 6 (2023) 13732.
Kúdela, R., Kučera, M., Olejníková, B., Eliáš, P., Hasenöhrl, S., Novák, J., : Formation of interfaces in InGaP/GaAs/InGaP quantum wells. J. Crystal Growth 212 (2000) 21-28.
1. Nakano, T.: J. Crystal Growth 221 (2000) 136.
2. Wallart, X.: Applied Phys. Lett. 81 (2002) 1086.
3. Wallart, X.: Phys. Rev. B 68 (2003) 235314.
* 4. Begotti, M.: 10th European Workshop on MOVPE. Lecce 2003.
5. Gladkov, P.: ASDAM 2004. Piscataway: IEEE 2004. P. 17.
6. Oliveira, C.L.N.: Applied Surface Sci 234 (2004) 38.
7. Laureto, E.: Inter. J. Modern Phys. B 18 (2004) 1743.
8. Chang, Y.M.: Applied Phys. Lett. 84 (2004) 2548.
9. Pelosi, C.: Crystal Research Technol. 40 (2005) 982.
10. Ribeiro, E.: Phys. Rev. B 73 (2006) 075330.
11. Pelosi, C.: J. de Physique IV 132 (2006) 205.
12. Zhang, X.B.: J. Electronic Mater. 35 (2006) 705.
13. Bosi, M.: Progress in Photovoltaics 15 (2007) 51.
14. Frigeri, C.: J. Electrochem. Soc. 156 (2009) H448.
15. Frigeri, C.: Superlatt. Microstr. 45 (2009) 451.
16. Silva, A.A.P.: J. Applied Phys. 106 (2009) 083521.
17. Frigeri, C.: Nanoscale Research Lett. 6 (2011) 194.
18. Bender, D.A.: Applied Phys. Lett. 102 (2013) 252102.
19. Wells, N.P.: J. Applied Phys. 118 (2015) 065703.
20. Ladugin, M. A.: Inorganic Mater. 55 (2019) 315.
Kicin, S., Novák, J., Kučera, M., Hasenöhrl, S., Eliáš, P., Vávra, I., Hudek, P., : Preparation of stair-step grooves by wet etching of AlAs/GaAs heterostructures and MOCVD growth of QWR Materials Sci Engn. B 65 (1999) 106-110.
1. Clawson A.R.: Materials Sci Engn. R 31 (2001) 1.
* 2. Gopal, M.: PhD Thesis. Nat. Univ. Singapore 2008.
Eliáš, P., Cambel, V., Hasenöhrl, S., Hudek, P., Novák, J., : SEM and AFM characterisation of high MESA patterned InP subtrated prepared by wet etching Mater. Sci Engn. B 66 (1999) 15-20.
1. Clawson, A.R.: Materials Sci Engn. R 31 (2001) 1.
2. Bandaru, P.: Materials Res. Soc. Symp. – Proc. 782 (2003) 471.
3 Kim, J.-H.: J. Electronic Mater. 37 (2008) 361.
Cambel, V., Kúdela, R., Gregušová, D., Hasenöhrl, S., Eliáš, P., Novák, J., : Characterization of 2DEG Hall probes in high magnetic field at 4,2K. In: ASDAM 98. Ed. J.Breza. Piscataway: IEEE 1998. P. 31.
1. Gonzalez-Jorge, H.: Cryogenics 46 (2006) 736.
Cambel, V., Gregušová, D., Eliáš, P., Hasenöhrl, S., Olejníková, B., Novák, J., Schaepers, T., Neurohr, K., Fox, A., : Characterization of InGaAs/InP microscopic Hall probe arrays with 2DEG active layer Mater. Sci Engn. B 51 (1998) 188.
1. Bydžovský, J.: Sensors Actuators A 91 (2001) 21.
2. Vavra, I.: Sensors Actuators A 91 (2001) 177.
Hasenöhrl, S., Kučera, M., Novák, J., Bujdák, M., Eliáš, P., Kúdela, R., : MOCVD growth of InxGa1-xAs/GaAs multiple quantum well and superlattice structures for optical modulators Solid State Electron. 42 (1998) 263.
1. Donkor, E.: Semiconductors Semimetals 73 (2001) 15.
Cambel, V., Eliáš, P., Kúdela, R., Novák, J., Olejníková, B., Mozolová, Ž., Majoros, M., Kvitkovič, J., Hudek, P., : Preparation, characterization and application of microscopic Hall probe arrays Solid State Electron. 42 (1998) 247.
1. Kahng, Y.H.: J. Korean Phys. Soc 69 (2016) 1456.
Kováč, P., Cambel, V., Gregušová, D., Eliáš, P., Hušek, I., Kúdela, R., Hasenöhrl, S., Ďurica, M., : Testing of homogenity of Bi(2223)/Ag tapes by Hall probe array IoP Conf. Series No. 158 (1997) 1311.
1. Gomory, F.: Physica C 308 (1998) 203.
2. Schauer, W.: Proc. 9th CIMTEC. Florence 1998. P. 436
3. Herrmann, J.: IEEE Trans. Applied Supercond. 9 (1999) 1824.
4. Lehndorff, B.R.: Springer Trans. Modern Phys. 171 (2001) 1.
5. Bydžovský, J.: Sensors Actuators A 91 (2001) 21.
Novák, J., Eliáš, P., : A silicon-InGaAs tandem photodetector for radiation thermometry Measurement Sci Technol. 6 (1995) 1547.
1. Zhou, X.: IEEE Trans. Electron Dev. 61 (2014) 838.
Gregušová, D., Eliáš, P., Malacký, L., Kúdela, R., Škriniarová, J., : Wet chemical MESA etching of InGaP and GaAs with solutions based on HCl, CH3COOH and H2O2 Physica Status Solidi A 151 (1995) 113.
1. Keckes, J.: J. Applied Phys. 80 (1996) 6204.
* 2. Stuchlíková, L.: ASI NATO SERIES 11 (1996) 95.
* 3. Redhammer, R.: ASI NATO SERIES 11 (1996) 293.
4. Rabah, H.: Applied Surf. Sci 171 (2001) 34.
5. Cich, M.J.: Applied Phys. Lett. 82 (2003) 651.
* 6. Joray, R.: PhD Thesis. Lausanne: EPFL 2005.
7. Mikulics, M.: Applied Phys. Lett. 88 (2006) 041118.
8. Kordos, P.: Applied Phys. A 87 (2007) 563.
9. Burns, D. W.: MEMS Materials and Processes Handbook. Springer 2011. ISBN 978-0-387-47316-1. P. 457-665.
10. Weber, J.: IEEE J. Photovolt. 7 (2017) 335.