doc. Ing. Novák Jozef, DrSc.

Novák, J., Laurenčíková, A., Eliáš, P., Hasenöhrl, S., Sojková, M., Kováč, J.jr., and Kováč, J.: Investigation of a nanostructured GaP/MoS2 p-n heterojunction photodiode, AIP Adv. 12 (2022) 065004.

1. Late, D.: AIP Adv. 12 (2022) 110401.

Bruncko, J., Kováč, J., Michalka, M., Netrvalová, M., Kováč, J., Vincze, A., and Novák, J.: Electrical and optical properties of thin ZnO shell layers on GaP nanorods grown by pulsed laser deposition, Thin Solid Films 725 (2021) 138634.

1. Chala, S.: Trans Electr. Electron. Mater. 23 (2022) 544.

Škriniarová, J., Hronec, P., Chlpík, J., Laurenčíková, A., Kováč, J.jr., Novák, J., and Andok, R.: Investigation of volume fraction of GaP nanowires by SEM characterization and spectroscopic ellipsometry, Optik 234 (2021) 166572.

1. Zhao, R.N.: J. Nanopart. Res. 23 (2021) 269.
2. Yao, Z.H.: Inter. J. Fatigue 165 (2022) 107179.

Mikulics, M., Kordoš, P., Gregušová, D., Gaži, Š., Novák, J., Sofer, Z., Mayer, J., and Hardtdegen, H.: Local increase in compressive strain (GaN) in gate recessed AlGaN/GaN MISHFET structures induced by an amorphous AlN dielectric layer, Semicond. Sci Technol. 36 (2021) 095040.

1. Bhardwaj, N.: Applied Surface Sci 572 (2022) 151332.
#    2. Liu, Y.: Micro Nanostruct. 164 (2022) 107160.
3. Huang, J.H.: J. Applied Phys. 134 (2023) 223103.

Novák, J., Eliáš, P., Hasenöhrl, S., Laurenčíková, A., Kováč, J.jr., Urbancová, P., and Pudiš, D.: Twinned nanoparticle structures for surface enhanced Raman scattering, Applied Surface Sci 528 (2020) 146548.

1. Dumiszewska, E.: Crystals 13 (2023) 1539.

Novák, J., Laurenčíková, A., Eliáš, P., Hasenöhrl, S., Sojková, M., Dobročka, E., Kováč, J.jr., Kováč, J., Ďurišová, J., and Pudiš, D.: Nanorods and nanocones for advanced sensor applications, Applied Surface Sci 461 (2018) 61-65.

1. Rajkumar, C.: Results in Phys. 15 (2019) 102647.
2. Rajkumar, C.: Vacuum 168 (2019) UNSP 108856.
3. Chen, Y.: Adv. Mater. 32 (2021) 2001668.
4. Dumiszewska, E.: Crystals 13 (2023) 1539.

Laurenčíková, A., Eliáš, P., Hasenöhrl, S., Kováč, J.jr., Szobolovszký, R., and Novák, J.: GaP nanocones covered with silver nanoparticles for surface-enhanced Raman spectroscopy, Applied Surface Sci 461 (2018) 149-153.

1. Zeng, Y.: Applied Surface Sci 544 (2021) 148924.
2. Liu, Y.: Mater. Horizons ‏ 8 (2021)‏ 370.
3. Ge, K.: Sensors Actuators B 361 (2022) 131734.
4. Ge, K.: Analyt. Bioanalyt. Chem. 414 (2022) 2385.
5. Lee, J.Y.: J. Korean Phys. Soc 82 (2023) 473.
6. Dumiszewska, E.: Crystals 13 (2023) 1539.

Lettrichová, I., Pudiš, D., Gaso, P., Jandura, D., Kováč, J.jr., Laurenčíková, A., Novák, J., and Goraus, M.: Polymer-based 3D microcones for application in SERS, Proc. SPIE 10976 (2018) 109760V.

1. Kim, J.A.: Adv. Optical Mater.‏ 8 (2020) 1901934.
#    2. Kim, J.A.: Progress in Biomed. Engn. 2 (2020) 042001.

Lettrichová, I., Laurenčíková, A., Pudiš, D., Novák, J., Goraus, M., Kováč, J.jr., Gaso, P., and Nevrela, J.: 2D periodic structures patterned on 3D surfaces by interference lithography for SERS, Applied Surface Sci 461 (2018) 171-174.

1. Hofmann, M.: J. Vacuum Sci Technol. B 37 (2019) 061803.
2. Chen, L.S.: Acta Optica Sinica 41 (2021) 0823018.
3. Pangpaiboon, N.: J. Metals Mater. Minerals 31 (2021) 33.
#     4. Lu, C.: Guangxue Jingmi Gongcheng/Optics Precision Engn. 30 (2022) 1836.
5. Roa, S.: Surfac. Interfac. 39 (2023) 102948.
6. Nie, C.H.: J. Pharmaceut. Anal. 13 (2023) 1429.

Novák, J., Laurenčíková, A., Hasenöhrl, S., Eliáš, P., and Kováč, J.:Methanol sensor for integration with GaP nanowire photocathode, Proc. SPIE 10248, Nanotechnology VIII (2017) 102480E.

#       1. Zhao, T.: Lecture Notes in Electr. Engn. 567 (2020) 264.

Ďurišová, J., Pudiš, D., Laurenčíková, A., Novák, J., and Šušlik, Ľ.: Reflectance suppression of ZnO coated GaP nanowires, Thin Solid Films 640 (2017) 88–92.

1. Tripathi, S.: Mapan-J. Metrol. Soc India 36 (2021) 97.
2. Vazinishayan, A.: Optik 234 (2021) 166545.

Stoklas, R., Gregušová, D., Blaho, M., Fröhlich, K., Novák, J., Matys, M., Yatabe, Z.,  Kordoš, P., and Hashizume, T.: Influence of oxygen-plasma treatment on AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors with HfO2 by atomic layer deposition: leakage current and density of states reduction, Semicond. Sci Technol. 32 (2017) 045018.

1. Liang, X.: Semicond. Sci Technol. 32 (2017) 095010.
2. Yoon, S.-J.: J. Alloys Compounds 741 (2018) 999.
3. Bazaka, K.: Nanoscale 10 (2018) 17494.
4. Wang, C.: Phys. Status Solidi a 215 (2018) 1800092.
5. Gulseren, M.E.: Mater. Research Express 6 (2019) 095052.
6. Gokhan, K.: Solid-State Electron. 158 (2019) 22.
7. Xu, K.: Chemistry-Europ. J. 25 (2019) 5014.
8. Cai, Y.: ICICDT 2019.
9. Biswas, M.: J. Lumines. 222 (2020) 117123.
10. Cai, Y.: Japan. J. Applied Phys. 59 (2020) 041001.
11. Cai, Y.: IEEE Access 8 (2020) 95642.
12. Abo-Kahla, D.A.M.: J. Optical Soc America B 37 (2020) A96.
#   13. Abo-Kahla, D.A.M.: Pramana – J. Phys. 94 (2020) 65.
14. Choi, S.: J. Alloys Compounds 854 (2021) 157186.
15. Akazawa, M.: Japan. J. Applied Phys. 60 (2021) 036503.
16. Izsak, T.: Mater. Sci Engn. B 273 (2021) 115434.
17. Schiliro, E.: ACS Applied Electr. Mater. 4 (2022) 406.
18. Wang, C.C.: Applied Phys. Express 17 (2024) 051002.

Lettrichová, I., Pudiš, D., Laurenčíková, A., Gaso, P., Šušlik, Ľ., Jandura, D., Ďurišová, J., and Novák, J.: Optical properties of GaAs-based LED with Fresnel structure in the surface, Proc. SPIE 10142 (2016) 101421P.

1. Chen, D.: Macromolecul. Rapid Comm. 42 (2021) 2000462.

Mikulics, M., Arango, Y., Winden, A., Adam, R., Hardtdegen, A., Grützmacher, D., Plinski, E., Gregušová, D., Novák, J., Kordoš, P., Moonshiram, A., Marso, M., Sofer, Z., Lüth, H., and Hardtdegen, H.: Direct electro-optical pumping for hybrid CdSe nanocrystal/III-nitride based nano-light-emitting diodes, Applied Phys. Lett. 108 (2016) 061107.

1. Vassilakopoulou, A.: Applied Mater. Today 5 (2016) 128.
2. Yang, Y.: Optical Mater. 66 (2017) 659.
3. Yuan, J.: Semicond. Sci Technol. 32 (2017) 045001.
4. Jiang, Y.: IEEE Electron Device Lett. 38 (2017) 1684.
5. Zhao, Y.: J. Micromech. Microengn. 27 (2017) 115004.
6. Philip, M.R.: ACS Omega 2 (2017) 5708.
#      7. Wang, Y.: Nanjing Youdian Daxue Xuebao (Ziran Kexue Ban)/J. Nanjing Univ. Posts Telecomm. (Natural Science)  37 (2017) 37.
#      8. Rajan Philip, M.: ACS Omega 2 (2017) 5708.
9. Guo, X.: J. Applied Phys. 123 (2018) 175701.
10. Qin, C.: Applied Phys. Express 11 (2018) 051201.
11. Zhang, S.: Adv. Mater. Technol. 3 (2018) 1700285.
12. Wang, Y.: Light-Sci Appl. 7 (2018) 83.
13. Wang, Q.: J. Mater. Sci 53 (2018) 16439.
14. Huang, J.: J. Mater. Sci 54 (2019) 560.
15. Wang, Q.: Chinese Phys. B 28 (2019) 087802.
16. Hajlaoui, M.E.: Mater. Sci Semicond. Process. 109 (2020) 104934.
17. Mackova, A.: Phys. Chem. Chem. Phys. ‏ 22 (2020) ‏ 23563.
18. Kluczyk-Korch, K.: Nanotechnol. 32 (2021) 105203.
19. Kluczyk-Korch, K.: Electron. 10 (2021) 1829.
20. Wu, C.X.: J. Phys. Chem. Lett. 12 (2021) 3522.
21. Khan, M.S.: J. Solid State Chem. 304 (2021) 122606.
22. Koryakina, I.G.: Adv. Colloid Interface Sci 298 (2021) 102548.
23. Hu, T.G.: J. Phys. D 55 (2022) 035102.

Kováč, J.Jr., Hronec, P., Búc, D., Škriniarová, J., Šutta, P., Kováč, J., and Novák, J.: Study of ZnO nanostructures grown by a hydrothermal process on GaP/ZnO nanowires, Applied Surface Sci 337 (2015) 254-258.

#    1. Yang, X.: Cailiao Daobao/Mater. Rev. 31 (2017) 138.
2. Jena, S.K.: Environmen. Pollut. 280 (2021) 116964.
3. Leng, J.: Bioactive Mater. 6 (2021) 4670.
4. Wang, S.N.: J. Phys. D 55 (2022) 395108.

Pudiš, D., Škriniarová, J., Lettrichová, I., Laurenčíková, A., Benčurová, A., Kováč, J., and Novák, J.: Near-field scanning optical microscopy and lithography for LED characterization and semiconductor patterning, Proc. SPIE 9441 (2014) 94410P.

1. Suslik, L.: In 13th Inter. Conf. Elektro – ELEKTRO 2020.

Mikulics, M., Hardtdegen, H., Arango, Y.C., Adam, R., Fox, A., Grützmacher, D., Gregušová, D., Stanček, S., Novák, J., Kordoš, P., Sofer, Z., Juul, L., and Marso, M.: Reduction of skin effect losses in double-level-T-gate structure, Applied Phys. Lett. 105 (2014) 232102.

1. Madhulika.: Semicond. Sci Technol. 36 (2021) 035004.

Kubicová, I., Pudiš, D., Škriniarová, J., Kováč, J., Kováč, J., Jakabovič, J., Šušlik, Ľ., Novák, J., and Kuzma, A.:2D irregular structure in the LED surface patterned by NSOM lithography, Applied Surface Sci 267 (2013) 116-119.

1. Wu, C.-Y.: Optics Express 22 (2014) 10593.
2. Das, A.: Nanophoton. 3 (2014) SI19.
3. Yang, Y.: Microelectron. Engn. 139 (2015) 39.
4. Cui, J.: Integrated Ferroelectr. 164 (2015) SI90.
5. Pu, X.N.: Inter. J. Mechan. Sci 263 (2024) 108790.

Novák, J., Laurenčíková, A., Vávra, I., Hasenöhrl, S., and Reiffers, M.: Magnetic properties of InMnAs nanodots prepared by MOVPE, J. Magnetism Magnetic Mater. 327 (2013) 20-23.

1. Bouravleuv, A. D.: Nanotechnol. 27 (2016) 425706.
2. Bouravleuva, A.: J. Crystal Growth 468 (2017) 680.
3. Kodaira, R.: J. Crystal Growth 507 (2019) 241.
#     4. Sanygin, V.P.: Kondensir. Sredy Mezhfaznye Granitsy 23 (2021) 413.
5. Muneta, I.: Sci Rep 12 (2022) 17199.

Laurenčíková, A., Hasenöhrl, S., Eliáš, P., Stoklas, R., Blaho, M., Novotný, I., Križanová, Z., and Novák, J.Ohmic contacts to p-GaP/n-ZnO core/shell nanowires based on Au metallization, Applied Surface Sci 267 (2013) 60-64.

1. Vidu, R.: Frontiers in Systems Neurosci 8 (2014) 91.
#     2. Opris, I.: In Recent advances on the modular organization of the cortex. Springer 2015 ISBN: 978-94-017-9899-0. P. 339.
3. Jahromi, K.E.: IEEE Electron Device Lett. 37 (2016) 43.
4. Pampaloni, N.P.: Front. Neurosci 12 (2019) 953.

Novák, J., Križanová, Z., Vávra, I., Eliáš, P., Hasenöhrl, S., Laurenčíková, A., Novotný, I., Kováč, J., Šutta, P., and Mikulics, M.: Structural and optical properties of individual GaP/ZnO core-shell nanowires, Vacuum 98 (2013) 106-110.

1. Chee, C.Y.: Ceramics Inter. 40 (2014) 9997.
2. Karunakaran, C.: Powder Technol. 254 (2014) 480.

Kúdela, R., Šoltýs, J., Vincze, A., and Novák, J.Tellurium delta-doped InGaP layers grown by metalorganic vapour phase epitaxy, Phys. Status Solidi RRL 7 (2013) 443–446.

1. Gibson, B.: J. Anal. Atomic Spectrom. 29 (2014) 1969.
2. Bedair, S.M.: Applied Phys. Lett. 108 (2016) 203903.
3. Li, B.: J. Applied Phys. 134 (2023) 065702.

Hasenöhrl, S., Eliáš, P., Šoltýs, J., Stoklas, R., Laurenčíková, A., and Novák, J.Zinc-doped gallium phosphide nanowires for photovoltaic structures, Applied Surface Sci 269 (2013) 72-76.

1. Chandiramouli, R.: Mater. Sci Engn. B 194 (2015) 55.
2. Lee, S.: ACS Applied Mater. & Interfaces 8 (2016) 16178.
3. Horley, P.: Physica E 83 (2016) 227.
4. Chen, J.-Y.: CRYSTENGCOMM 19 (2017) 975.
5. Mohammad, R.: Inter. J. Modern Phys. C 28 (2017) Iss. 3.
6. Kim, D.-H.: J. Electronic Mater. 46 (2017) 4750.

Kordoš, P., Kúdela, R., Stoklas, R., Čičo, K., Mikulics, M., Gregušová, D., and Novák, J.Aluminum oxide as passivation and gate insulator in GaAs-based field-effect transistors prepared in situ by metal-organic vapor deposition, Applied Phys. Lett. 100 (2012) 142113.

1. Wang, L.S.: Applied Phys. Lett. 103 (2013) 092901.
2. Wang, L.-S.: Applied Phys. Express 7 (2014) 061201.
3. Aoki, T.: Applied Phys. Express 7 (2014) 106502.
4. Liu, L. N.: Applied Phys. Lett. 107 (2015) 213501.
5. Liu, L.: J. Vacuum Sci Technol. B 33 (2015) 050601.
6. Liu, L.N.: Physica Status Solidi-R 10 (2016) 703.
7. Moille, G.: Laser & Photonics Rev. 10 (2016) 409.
8. Liu, L. N.: Applied Phys. Lett. 110 (2017) 123506.
9. Liu, L.N.: Physica Status Solidi-R 11 (2017) 1700180.
10. Liu, L.N.: IEEE Trans. Electron Dev. 65 (2018) 72.
11. Izsak, T.: Mater. Sci Engn. B 273 (2021) 115434.
12. Vimala, P.: Inter. J. Comput. Mater. Sci Engn. 10 (2021) 2150021.

Novák, J., Šoltýs, J., Eliáš, P., Hasenöhrl, S., Stoklas, R., Laurenčíková, A., and Mikulics, M.: Electrical and photoluminescence properties of individual GaP nanowires doped by zinc, Phys. Status Solidi a 209 (2012) 2505-2509.

1. Jiang, H.-B.: Chinese Sci Bull. 59 (2014) SI2135.
2. Wallentin, J.: Nano Lett. 14 (2014) 1707.
3. Tomioka, K.: J. Phys. D 47 (2014) SI394001.
4. Liao, G.: Sci Rep. 6 (2016) 28240.

Novák, J., Novotný, I., Kováč, J., Eliáš, P., Hasenöhrl, S., Križanová, Z., Vávra, I., Stoklas, R., : Preparation of thin Ga-doped ZnO layers for core–shell GaP/ZnO nanowires. Applied Surface Sci 258 (2012) 7607-7611.

1. Jiang, Y.: Phys. Chem. Chem. Phys. 17 (2015) 16784.
2. Mohammad, R.: Physica E 73 (2015) 213.
3. Huang, J.-M.: Phys. Chem. Chem. Phys. 18 (2016) 15251.
4. Belorus, A.O.: IEEE NW Russia Young Researchers in Electr. Electron. Engn. Conf. (2019) 763.

Križanová, Z., Vávra, I., Hasenöhrl, S., Novák, J., : TEM analysis of InMnAs layers and dots prepared by low pressure MOVPE. Vacuum 86 (2012) 657-660.

1. Bouravleuv, A.D.: Semicond. 47 (2013) 1037.
2. Bouravleuv, A.: Applied Phys.Lett. 105 (2014) 232101.
3. Bouravleuv, A.: Physica Status Solidi-Rapid Res. Lett. 10 (2016) 554.

Pudiš, D., Šušlik, Ľ., Škriniarová, J., Kováč, J., Martinček, I., Kováč, J., Haščík, Š., Kubicová, I., Novák, J., Veselý, M., : Light extraction from a light emitting diode with photonic structure in the surface layer investigated by NSOM. Optics Laser Technol. 43 (2011) 917-921.

1. Kuzma, A.: Proc. SPIE 8697 (2012) 869720.
2. Yin, Z.: Optics Express 21 (2013) 28531.
3. Wang, J.: Applied Mechanics Mater. 333-335 (2013) 555.

Novák, J., Telek, P., Vávra, I., Hasenöhrl, S., Reiffers, M., : MOVPE growth and properties of light emitting diodes with an incorporated InMnAs ferromagnetic layer. J. Crystal Growth 315 (2011) 78-81.

1. Dorokhin, M.V.: Solid State Phenomena 190 (2012) 89.
2. Pudis, D.: Applied Surface Sci 269 (2013) 161.

Hasenöhrl, S., Novák, J., Vávra, I., Šoltýs, J., Kučera, M., and Šatka, A.: Epitaxial growth of GaP/InxGa1-xP (xIn ≥ 0,27) virtual substrate for optoelectronic applications, J. Electr. Engn. 62 (2011) 93-98.

1. Shi, B.: J. Applied Phys. 127 (2020) 033102.
2. Turkoglu, A.: Solid State Comm. 334 (2021) 114390.

Stoklas, R., Gregušová, D., Gaži, Š., Novák, J., and Kordoš, P.: Performance of AlGaN/GaN metal-insulator-semiconductor heterostructure field-effect transistors with AlN gate insulator prepared by reactive magnetron sputtering. J. Vacuum Sci Technol. B 29 (2011) 01A809.

1. Shih, H.-A.: Japan. J. Applied Phys. 51 (2012) Part 2 02BF01.
2. Shih, H.-A.: Applied Phys. Lett. 101 (2012) 043501.
3. Freedsman, J.J.: Applied Phys. Lett. 101 (2012) 013506.
4. Tuan, Q.N.: Phys. Status Solidi C 10 (2013) 1401.
5. Shih, H.-A.: J. Applied Phys. 116 (2014) 184507.
6. Son, P.L.: J. Applied Phys. 116 (2014) 054510.
7. Le, S.P.: J. Applied Phys. 119 (2016) 204503.
8. Tan, S.: J. Semicond. 40 (2019) 042801.
9. Ranjan, K.: Applied Phys. Express 12 (2019) 106506.
10. Fukuhara, N.: J. Applied Phys. 133 (2023) 085702.

Novák, J., Vávra, I., Hasenöhrl, S., Reiffers, M., Štrichovanec, P., Magen, C., : Role of growth mode in the formation of magnetic properties of InMnAs grown by MOVPE. J. Crystal Growth 318 (2011) 576-579.

1. Bouravleuva, A.: J. Crystal Growth 468 (2017) 680.

Novák, J., Vávra, I., Križanová, Z., Hasenöhrl, S., Šoltýs, J., Reiffers, M., Štrichovanec, P., : Dependence of Curie temperature on surface strain in InMnAs epitaxial structures. Applied Surface Sci 256 (2010) 5672-5675.

1. Bouravleuv, A.D.: Semicond. 47 (2013) 1037.
2. Bouravleuv, A.: Applied Phys.Lett. 105 (2014) 232101.
3. Bouravleuva, A.: J. Crystal Growth 468 (2017) 680.
4. Marcal, L.A.B.: Phys. Rev. B 96 (2017) 245301.
5. Bernardes, Y.: Phys. Rev. Mater. 7 (2023) 026002.

Mikulics, M., Stoklas, R., Dadgar, A., Gregušová, D., Novák, J., Grützmacher, D., Krost, A., and Kordoš, P.:InAlN/GaN/Si heterostructures and field-effect transistors with lattice matched and tensely or compressively strained InAlN, Applied Phys. Lett. 97 (2010) 173505.

1. Hasan, M.T.: Applied Phys. Lett. 99 (2011) 132102.
2. Zhang X.-F.: Chinese Phys. B 22 (2013) 017202.
3. Chen, H.: J. Applied Phys. 113 (2013) 194509.
4. Yang, Y.-N.: Acta Phys. Sinica 62 (2013) 177302.
5. Yu, Y.-X.: Chinese Phys. B 23 (2014) 047201.
6. Smith, M.D.: J. Mater. Chem. C 2 (2014) 5787.
7. Chen, H.: J. Applied Phys. 116 (2014) 074510.
8. Freedsman, J. J.: Applied Phys. Lett. 107 (2015) 103506.
9. Afzal, N.: Mater. Research Express 3 (2016) 085904.
#  10. Shen, B.: In Handbook of GaN Semicond. Mater. and Devices. CRC Press 2017. ISBN: 978-149874714-1, pp. 3-52.
11. Gaubas, E.: Semicond. Sci Technol. 33 (2018) 075015.
12. Xing, J.: J. Applied Phys. 124 (2018) 034904.
13. Biswas, D.: Semicond. Sci Technol. 34 (2019) 055014.
14. Sidikejiang, S.: Phys. Rev. B 107 (2023) 045202.

Šušlik, Ľ., Pudiš, D., Škriniarová, J., Kováč, J., Kováč, J., Kubicová, I., Martinček, I., Jakabovič, J., Novák, J., : Light emitting diode with 2D PhC structure in the surface analysed by NSOM. In: ASDAM ’10. Ed. J. Breza et al. Piscataway: IEEE 2010. ISBN: 978-1-4244-8572-7. P. 21-24.
1. Lee, W.: J. Korean Phys. Soc 64 (2014) 366.

Gregušová, D., Gaži, Š., Sofer, Z., Stoklas, R., Dobročka, E., Mikulics, M., Greguš, J., Novák, J., and Kordoš, P.: Oxidized Al film as an insulation layer in AlGaN/GaN Metal–Oxide–Semiconductor heterostructure field effect transistors, Japan. J. Applied Phys. 49 (2010) 046504.

1. Ozen, S.: Mater. Res. Express 3 (2016) 045012.
2. Kanaga, S.: IEEE Inter. Conf. Electron. Comput. Comm. Technol. 2018.

Kordoš, P., Mikulics, M., Fox, A., Gregušová, D., Čičo, K., Carlin, J., Grandjean, N., Novák, J., and Fröhlich, K.:RF performance of InAlN/GaN HFETs and MOSHFETs with up to 21, IEEE Electron Dev. Lett. 31 (2010) 180-182.

1. Lo C. -F.: J. Vacuum Sci Technol. B 29 (2011) 021002.
2. Lee, J.: Phys. Status Solidi A 208 (2011) 1538.
3. Corrion, A.L.: IEEE Electron Device Lett. 32 (2011) 1062.
4. Lo, C.F.: J. Vacuum Sci Technol. B 29 (2011) 061201.
#   5. Xue, F.: Guti Dianzixue Yanjiu Yu Jinzhan/Res. Progress Solid State Electron. 31 (2011) 421.
6. Tartarin, J.G.: IEEE ICNF 2011 (2011), art. no. 5994367, p. 452.
7. Huang, T.: IEEE Electron Device Lett. 33 (2012) 212.
8. Ketteniss, N.: Semicond. Sci Technol. 27 (2012) 035009.
9. Lo, C.-F.: J. Vacuum Sci Technol. B 30 (2012) 041206.
10. Liu, H.-Y.: IEEE Trans. Electron Dev. 60 (2013) 2231.
11. Lee, K.-W.: ECS Solid State Lett. 2 (2013) Q9.
12. Liu, L.:Proc. SPIE 8625 (2013) 86250W.
13. Rennesson, S.: IEEE Trans. Electron Dev. 60 (2013) 3105.
14. Choi, S.: J.Crystal Growth 388 (2014) 137.
15. Du, J.: J. Applied Phys. 115 (2014) 164510.
16. Lee, C.-S.: ECS J. Solid State Sci Technol. 3 (2014) Q227.
17. Lee, C.-S.: IEEE Trans. Electron Dev. 62 (2015) 1460.
18. Lee, C.-S.: Japan. J. Applied Phys. 55 (2016) 044102.
19. Du, J.: Micro & Nano Lett. 11 (2016) 503.
20. Lee, C.-S.: ECS J. Solid State Sci Technol. 5 (2016) Q284.
21. Lee, C.-S.: Semicond. Sci Technol. 32 (2017) 055012.
22. Lee, C.-S.: IEEE J. Electron Dev. Soc 6 (2018) 68.
23. Lee, C.-S.: IEEE J. Electron Dev. Soc 6 (2018) 1142.
24. Amarnath, G.: Inter. J. Numer. Modell.-Electron. Networks Dev. Fields 32 (2019) e2456.
25. Revathy, A.: Inter J. RF Microwave Comp.-Aided Engn. (2021) e22775.
26. Thron, A.M.: Physica Status Solidi A 218 (2021) 2100304.
27. Angamuthu, R.: Inter. J. RF Microwave Comp.-Aided Engn. 32 (2022) 23308.
28. Cui, P.: Semicond. Sci Technol. 38 (2023) 035011.
#  29. Shibata, K.: Inter. Meeting Future Electron Dev. – IMFEDK. Kansai 2021, pp. 1-2.
#    30. Deng, G., Zhang, L., Wang, Y., Yu, J., Niu, Y., Qian, H., Li X., Shi, Z., Zhang Y. In Micro and Nanostructures Volume 164 (2022) 207191.
31. He, Y.W.: IEEE Trans. Electron Dev. 70 (2023) 3001.

Novák, J., Šoltýs, J., Eliáš, P., Hasenöhrl, S., Vávra, I., : Study of the growth and structural properties of InMnAs dots grown on high-index surfaces by MOVPE. Mater. Sci Semicond. Proc. 13 (2010) 167-172.

1. Bouravleuv, A.D.: Semicond. 47 (2013) 1037.

Gregušová, D., Stoklas, R., Mizue, C., Hori, Y., Novák, J., Hashizume, T., and Kordoš, P.: Trap states in AlGaN/GaN metal-oxide-semiconductor structures with Al2O3 prepared by atomic layer deposition. J. Applied Phys. 107 (2010) 106104.

1. Hung, T.-H.: Applied Phys. Lett. 99 (2011) 162104.
2. Liu, X.: Applied Phys. Lett. 99 (2011) 093504.
3. Nepal, N.: Applied Phys. Express 4 (2011) 055802.
4. Long, R.D.: Materials 5 (2012) 1297.
5. Jackson, C.M.: J. Applied Phys. 113 (2013) 204505.
6. Zhang, K.: J. Applied Phys. 113 (2013) 174503.
7. Hahn, H.: Japan. J. Applied Phys. 52  (2013) 090204.
8. Ye, G.: Applied Phys. Lett. 103 (2013) 142109.
9. Zhao, S.L.: Applied Phys. Lett. 103 (2013) 212106.
10. Anand, M.J.: Phys. Status Solidi C 10 (2013) 1421.
11. Kong, Y.: IEEE Electron Device Lett. 35 (2014) 336.
12. Zhang P.: Chinese Physics Lett. 31 (2014) 037302.
13. Ma, X.-H.: Applied Phys. Lett. 104 (2014) 093504.
14. Schaefer, A.: Semicond. Sci Technol. 29 (2014) 075005.
15. Zhang, K.: Semicond. Sci Technol.  29 (2014) 075019.
16. Liao, X.-Y.: Chinese Phys. B 23 (2014) 057301.
17. Bakeroot, B.: J. Applied Phys. 116 (2014) 134506.
18. Lu, X.: Applied Phys. Lett. 105 (2014) 102911.
 19. Colon, A.: Solid-State Electr. 99 (2014) 25.
 20. Kodama, S.: IEEE Inter. Meeting Future Electron Dev. Kansai 2014.
21. Fang, Y.: Superlatt. Microstr. 82 (2015) 201.
22. Lee, J.-Y.: J. Semicond. Technol. Sci 15 (2015) 16.
23. Zhang, P.: Chinese Phys. B 24 (2015) 127306.
24. Choi, S.: J. Semicond. Technol. Sci 15 (2015) 497.
25. Schiliro, E.: Phys. Status Solidi C 12 (2015) 980.
#  26. Wang, Y.-H.: MANTECH 2015. P. 367.
#   27. Nagao, K.: ECS Transactions  66 (2015) 11.
28. Lo Nigro, R.: Thin Solid Films 617 (2016) SI138.
29. Clemente, I.E.: Proc. SPIE 10224 (2016) 1022425.
30. Schiliro, E.: J. Vacuum Sci Technol. A 35 (2017) 01B140.
31. Kubo, T.: Semicond. Sci Technol. 32 (2017) 065012.
32. Lu, X.: IEEE Trans. Electron Dev. 64 (2017) 824.
33. Jackson, C. M.: ECS J. Solid State Sci Technol. 6 (2017) P489.
34. Panda, A.: NANO Lett. 17 (2017) 7853.
35. Gao, J.: Phys. Status Solidi A 215 (2018) 1700498.
36. Wang, H.: Solid-State Electr. 141 (2018) 13.
37. Bao, S.: Chinese Phys. B 28 (2019) 067304.
38. Lee, H-P.: Mater. Res. Express 6 (2019) 105904.
39. Surana, V. K.: J. Applied Phys. 126 (2019) 115302.
40. Ghosh, J.: Microelectron. Engn. 216 (2019) 111097.
41. Kim, H.: Mater. Trans. 61 (2020) 88.
42. Liu, S.: IEEE Trans. Electron Dev. 68 (2021) 3296.
43. Yuan, Y.-D.: Chinese Phys. B 30 (2021) 077305.
44. Zheng, X.X.: Applied Phys. Express 15 (2022) 021001.
45. Calzolaro, A.: Materials 15 (2022) 791.
46. Liu, S.: Applied Phys. Lett. 120 (2022) 202102.
47. Huang, C.Y.: Chinese Phys. B 31 (2022) 097401.

Kordoš, P., Stoklas, R., Gregušová, D., Gaži, Š., Novák, J., : Trapping effects in Al2O3/AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistor investigated by temperature dependent conductance measurement. Applied Phys. Lett. 96 (2010) 013505.

1. Zeng, H.Z.: J. Applied Phys. 107 (2010) 084508.
2. Arslan, E.: Microelectr. Reliab. 51 (2011) 576.
3. Freedsman, Joseph J.: Applied Phys. Lett. 101 (2012) 013506.
4. Zhang, K.: J. Applied Phys. 113 (2013) 174503.
5. Ma, X.-H.: Applied Phys. Lett. 104 (2014) 093504.
6. Zhang, P.: Chinese Phys. Lett. 31 (2014) 037302.
7. Lu, X.: Applied Phys. Lett. 104 (2014) 032903.
8. Zhang, K.: Semicond. Sci Technol.  29 (2014) 075019.
9. Liu, X.: Applied Phys. Lett. 104 (2014) 263511.
10. Liao, X.-Y.: Chinese Phys. B 23 (2014) 057301.
11. Shih, H.-A.: J. Applied Phys. 116 (2014) 184507.
12. Ma, J.: Applied Phys. Express 7 (2014) 091002.
13. Zhou, Y.: Semicond. Sci Technol. 29 (2014) 095011.
#  14. Kaushik, J.K.: IEEE 2nd ICEE 2014 – 7151157.
15. Ramanan, N.: IEEE Trans. Electron Dev. 62 (2015) 546.
16. Fang, Y.: Superlatt. Microstr. 82 (2015) 201.
17. Zhang, P.: Chinese Phys. B 24 (2015) 127306.
18. Jiang, H.: IEEE Trans. Electron Dev. 64 (2017) 832.
19. Wang, N.: AIP Adv. 7 (2017) 095317.
20. Byun, Y.-C.: Applied Phys. Lett. 111 (2017) 082905.
21. Ranjan, K.: Applied Phys. Express 12 (2019) 106506.
22. Lee, H.-P.: Mater. Res. Express 6 (2019) 105904.
23. Bao, S.: Chinese Phys. B 28 (2019) 067304.
24. Ren, Y.: Physica Status Solidi A ‏217 (2020) SI1900701.
25. Rai, N.: IEEE Electron Dev. Technol. Manufact. Conf. – EDTM 2020.
26. Rai, N.: IEEE J. Electron Dev. Soc‏ 8 (2020) ‏ 1145.
27. Whiteside, M.: Mater. Sci Engn. B 262  (2020) 114707.
28. Whiteside, M.: Electronics ‏ 9 (2020) 1858.
29. Duman, S.: J. Mater. Sci-Mater. Electron. ‏ 31 (2020) 21260.
30. Huang, Z.W.: IEEE Trans. Electron Dev. 68 (2021) 1507.
31. Bhardwaj, N.: Applied Surface Sci 572 (2022) 151332.

Kordoš, P., Stoklas, R., Gregušová, D., and Novák, J.Characterization of AlGaN/GaN metal-oxide-semiconductor field-effect transistors by frequency dependent conductance analysis, Applied Phys. Lett. 94 (2009) 223512.

1. Zeng, H.Z.: J. Applied Phys. 107 (2010) 084508.
2. Kayis, C.: IEEE Electron Device Lett. 31 (2010) 1041.
3. Kayis, C.: J. Applied Phys. 109 (2011) 084522.
4. Freedsman, J.: Japan. J. Applied Phys. 50 (2011) 04DF03.
5. Freedsman, J.J.: Applied Phys. Lett. 99 (2011) 033504.
6. Kayis, C.: Proc. SPIE 7939 (2011) 79392F.
7. Kayis, C.: Physica Status Solidi C 8 (2011) 1539.
8. Lee, B.: ECS Trans. 41 (2011) 445.
9. Freedsman, J.J.: AIP Adv. 2 (2012) 022134.
10. Freedsman, Joseph J.: Applied Phys. Lett. 101 (2012) 013506.
11. Fiorenza, P.: Applied Phys. Lett. 101 (2012) 172901.
12. Perez-Tomas, A.: Applied Phys. Lett. 102 (2013) 023511.
13. Zhang, K.: J. Applied Phys. 113 (2013) 174503.
14. Ye, G.: Applied Phys. Lett. 103 (2013) 142109.
15. Lo Nigro, R.: Surface Coatings Technol. 230 (2013) 152.
16. Fiorenza, P.: Applied Phys. Lett. 103 (2013) 112905.
17. Ma, X.-H.: Applied Phys. Lett. 103 (2013) 033510.
18. Anand, M.J.: Phys. Status Solidi C 10 (2013) 1421.
19. Ma, Xiao-H.: Applied Phys. Lett. 104 (2014) 093504.
20. Lu, X.: Applied Phys. Lett. 104 (2014) 032903.
21. Lo Nigro, R.: Thin Solid Films 563 (2014) 50.
22. Lu, X.: Phys. Status Solidi A 211 (2014) 775.
23. Roccaforte, F.: Phys. Status Solidi A 211 (2014) 2063.
24. Lu, X.: Applied Phys. Lett. 105 (2014) 102911.
25. Ma, J.: Applied Phys. Express 7 (2014) 091002.
26. Zhou, Y.: Semicond. Sci Technol. 29 (2014) 095011.
27. Colon, A.: Solid-State Electron. 99 (2014) 25.
28. Qin, X.: Applied Phys. Lett. 105 (2014) 011602.
29. Kaushik, J.K.: IEEE 2nd ICEE 2014 – 7151157.
30. Kaushik, J.K.: IEEE 2nd ICEE 2014 – 7151145.
31. Fang, Y.: Superlatt. Microstr. 82 (2015) 201.
32. Tham, W.H.: IEEE Electron Device Lett. 36 (2015) 1291.
33. Luo, J.: Chinese Phys. B 24 (2015) 117305.
34. Waller, W.M.: IEEE Trans. Electron Dev. 62 (2015) 2464.
35. Lo Nigro, R.: Mater. Chem. Phys. 162 (2015) 461.
36. Mehari, S.: IEEE Electron Device Lett. 36 (2015) 893.
37. Duan, T. L.: ECS J. Solid State Sci Technol. 5 (2016) P514.
38. Lu, X.: IEEE Trans. Electron Dev. 64 (2017) 824.
39. Wang, Q.: RSC Adv. 7 (2017) 11745.
40. Shi, Y.: Nanoscale Research Lett. 12 (2017) 342.
41. Fiorenza, P.: Physica Status Solidi A 214 (2017) 1600366.
42. Duan, T.: In Gallium Nitride Power Devices. Eds.Yu, H., Duan, T. New York: Pan Stanford 2017. ISBN 978-981-4774-09-3. P. 145-191.
43. Byun, Y.-C.: Applied Phys. Lett. 111 (2017) 082905.
# 44. Wang, Q.: Proc. Inter. Symp. Power Semicond. Devices and ICs 2017. Art. no. 7988926, P. 215.
45. Wang, H.: Japan. J. Applied Phys. 57 (2018) SI04FG05.
46. Roccaforte, F.: Rivista Del Nuovo Cimento 41 (2018) 625.
47. Taoka, N.: Semicond. Sci Technol. 34 (2019) 025009.
48. Arslan, E.: Microelectr. Reliab. 103 (2019) UNSP 113517.
49. Ranjan, K.: Applied Phys. Express 12 (2019) 106506.
50. Tokuda, H.: Japan. J. Applied Phys. 58 (2019) 106503.
51. Lee, H.-P.: Mater. Res. Express 6 (2019) 105904.
52. Surana, V.K.: J. Applied Phys. 126 (2019) 115302.
53. Kim, H.: Trans. Electr. Electron. Mater. 20 (2019) 359.
54. Kim, H.: J. Vacuum Sci Technol. B 37 (2019) 041203.
55. Kim, H.: Semicond. Sci Technol. 35 (2020) Iss. 1.
56. Kim, H.: Coatings 10 (2020) 489.
57. Cui, P.: Japan. J. Applied Phys. 59 (2020) 020901.
58. Whiteside, M.: Mater. Sci Engn. B 262 (2020) 114707.
59. Zhang, W.H.: IEEE J. Electron Dev. Soc. 9 (2021) 348.
60. Fu, Y.: Chinese Phys. B 30 (2021) 058101.
61. Whiteside, M.: Mater. Sci Engn. B 270 (2021) 115224.
62. Amir, W.: Sci Rep. 11 (2021) 22401.
63. Mayersky, J.: Applied Phys. Lett. 121 (2022) 102903.
64. Cui, P.: Semicond. Sci Technol. 38 (2023) 035011.
65. Gomeniuk, Y.V.: J. Electron. Mater. 52 (2023) SI3112.
66. Lee, H.J.: Electronics 13 (2024) 2490.
67. He, Z.Y.: Applied Phys. Lett. 125 (2024) 042106.

Gregušová, D., Stoklas, R., Eickelkamp, M., Fox, A., Novák, J., Vescan, A., Grützmacher, D., Kordoš, P., :Characterization of AlGaN/GaN MISHFETs on a Si substrate by static and high-frequency measurements. Semicond. Sci Technol. 24 (2009) 075014.

1. Lee, K.W.: Applied Phys. Lett. 96 (2010) 203506.
2. Liu, H.-Y.: IEEE Trans. Electron Dev. 61 (2014) 2760.
3. Chiu, Y.S.: Japan. J. Applied Phys. 55 (2016) 051001.
4. Chiu, Y.S.: Japan. J. Applied Phys. 56 (2017) 094101.
5. Huang, C.Y.: Materials 15 (2022) 6895.

Stoklas, R., Gaži, Š., Gregušová, D., Novák, J., Kordoš, P., : Enhancement of effective carrier velocity in AlGaN/GaN MOSHFETs with Al2O3 gate oxide. Physica Status Solidi c 5 (2008) 1935-1937.
1. Saadat, O.I.: IEEE Electron Device Lett. 30 (2009) 1254.
2. Li, Y.: IEEE Trans. Electron Dev. 64 (2017) 3139.

Stoklas, R., Gregušová, D., Novák, J., Vescan, A., and Kordoš, P.: Investigation of trapping effects in AlGaN/GaN/Si field-effect transistors by frequency dependent capacitance and conductance analysis, Applied Phys. Lett. 93 (2008) 124103.

1. Zeng, H.Z.: J. Applied Phys. 107 (2010) 084508.
2. Demirtas, S.: Microelectr. Reliab. 50 (2010) 758.
3. Bi, Z.W.: Chinese Phys. B 19 (2010) 077303.
4. Tan, S.: Applied Phys. Lett. 97 (2010) 053502.
5. Hu, C.Y.: Applied Phys. Lett. 97 (2010) 222103.
6. Arslan, E.: J. Electronic Mater. 39 (2010) 2681.
7. Quan, S.: Chinese Phys. B 20 (2011) 018101.
8. Joh, J.: IEEE Trans. Electron Dev. 58 (2011) 132.
9. Zade, D.: Microelectr. Engn. 88 (2011) 1109.
10. Tajima, M.: Japan. J. Applied Phys. 50 (2011) 061001.
11. Quan, S.: Chinese Phys. B 20 (2011) 058501.
12. Arslan, E.: Microelectr. Reliab. 51 (2011) 576.
13. Ma, X.H.: Chinese Phys. B 20 (2011) 027304.
14. Liu, L.: J. Vacuum Sci Technol. B 29 (2011) 060603.
15. Yang, L.-Y.: Chinese Phys. B 20 (2011) 117302.
16. Bi, Z.-W.: Chinese Phys. B 20 (2011) 087307.
17. Freedsman, J.J.: Applied Phys. Lett. 99 (2011) 033504.
18. Freedsman, J.J.: AIP Adv. 2 (2012) 022134.
19. Hu, C.-Y.: J. Applied Phys. 111 (2012) 084504.
20. Silvestri, M.: IEEE Electron Device Lett. 33 (2012) 1550.
21.  Zhang, C.: Phys. Status Solidi C 9 (2012) 934.
#     22. Ren, F.: Mater. Res. Soc Symp. Proc. 1396 (2012) 115.
23. Shih, Hong-A.: Applied Phys. Lett. 101 (2012) 043501.
24. Freedsman, Joseph J.: Applied Phys. Lett. 101 (2012) 013506.
25. Perez-Tomas, A.: Applied Phys. Lett. 102 (2013) 023511.
26. Zhang, K.: J. Applied Phys. 113 (2013) 174503.
27. Feng, Q.: Chinese Phys. Lett. 30 (2013) 127302.
28. Fiorenza, P.: Applied Phys. Lett. 103 (2013) 112905.
29. Ma, X.-H.: Applied Phys. Lett. 103 (2013) 033510.
30. Capriotti, M.: Applied Phys. Lett. 104 (2014) 113502.
31. Ma, Xiao-H.: Applied Phys. Lett. 104 (2014) 093504.
32. Zhu, J.-J.: AIP Advan. 4 (2014) 037108.
33. Zhang, P.: Chinese Phys. Lett. 31 (2014) 037302.
34. Lansbergen, G.P.: Inter. Reliab. Phys. Symp. 2014.
35. Jung, H.:  Phys. Status Solidi C 11 (2014) 940.
36. Shih, H.-A.: J. Applied Phys. 116 (2014) 184507.
37. Chen, Y.: Applied Phys. Lett. 105 (2014) 193502.
38. Yatabe, Z.: Japan. J. Applied Phys. 53 (2014) 100213.
39. Zhou, Y.: Solid-State Electr. 29 (2014) 095011.
40. Colon, A.: Solid-State Electr. 99 (2014) 25.
#   41. Gaewdang, T.: Advanced Mater. Research 931-932 (2014) 122.
42. Ando, Y.: IEEE Trans. Electron Dev. 62 (2015) 1440.
43. Chakraborty, A.: Applied Phys. Lett. 106 (2015) 082112.
44. Luo, J.: Chinese Phys. B 24 (2015) 117305.
45. He, Y.: Applied Phys. Lett. 107 (2015) 063501.
46. Lu, X.: Applied Phys. Express 9 (2016) 031001.
47. Knyazev, A.V.: Lecture Notes in Computer Sci 9728 (2016) 282.
48. Zheng, X.: Microelectron. Reliab. 63 (2016) 46.
49. Zhang, W.H.: Applied Phys. Lett. 110 (2017) 252102.
50. Kubo, T.: Semicond. Sci Technol. 32 (2017) 065012.
51. Fiorenza, P.: Phys. Status Solidi A 214 (2017) 1600366.
52. Zheng, X.: IEEE Trans. Electron Dev. 64 (2017) 1498.
53. Paine, B.M.: IEEE Trans. Device Mater. Reliab. 17 (2017) 130.
54. Lu, X.: IEEE Trans. Electron Dev. 64 (2017) 824.
55. Latrach, S.: Current Applied Phys. 17 (2017) 1601.
56. Kubo, T.: Semicond. Sci Technol. 32 (2017) 125016.
57. Le, S.P.: J. Applied Phys. 123(2018) 034504.
58. Yang, W.: 2018 IEEE 6TH Workshop Wide Bandgap Power Devices Appl. (WIPDA), pp. 103.
59. Ren J.: Acta Phys. Sinica 67 (2018) 247202.
60. Chakraborty, A.: Chinese J. Phys. 56 (2018) 2365.
61. Bao, S.: Chinese Phys. B 28 (2019) 067304.
62. Yang, W.: IEEE Trans. Device Mater. Reliab. 19 (2019) 350.
63. Zheng, X.: Microelectron. Reliab. 93 (2019) 57.
64. Arslan, E.: Microelectron. Reliab. 103 (2019) UNSP 113517.
65. Ranjan, K.: Applied Phys. Express 12 (2019) 106506.
66. Tokuda, H.: Japan. J. Applied Phys. 58 (2019) 106503.
67. Lee, H.-P.: Mater. Res. Express 6 (2019) 105904.
68. Zhang, H.: J. Supercrit. Fluids 158 (2020) 104746.
69. Liu, M.: Chinese Phys. Lett. 37 (2020) 097101.
70. Ranjan, K.: IEEE Electron Devices Technol. Manufact. Conf. – EDTM 2020.
71. Rai, N.: IEEE J. Electron Dev. Soc‏ 8 (2020)‏ 1145.
72. Ma, Q.: Japan. J. Applied Phys. 59 (2020) 101002.
73. Liu, S.: IEEE Trans. Electron Dev. 68 (2021) 3296.
74. Hong, Y.H.: Applied Phys. Lett. 119 (2021) 132103.
75. Chen, J.B.: J. Phys. D 55 (2022) 095112.
76. Calzolaro, A.: Materials 15 (2022) 791.
77. Zhao, S.L.: Results in Phys. 36 (2022) 105450.
78. Liu, S.: Applied Phys. Lett. 120 (2022) 202102.
79. Song, X.L.: Mater. Sci Semicond. Process. 148 (2022) 106809.
80. Miller, N.C.: IEEE Trans. Electron Dev. 70 (2023) 435.
81. Su, H.K.: IEEE Electron Device Lett. 44 (2023) 1939.
82. Su, H.K.: Applied Phys. Lett. 123 (2023) 132104.
83. Hong, Y.H.: IEEE Trans. Electron Dev. 71 (2024) 1502.

Kordoš, P., Gregušová, D., Stoklas, R., Gaži, Š., and Novák, J.: Transport properties of AlGaN/GaN metal–oxide–semiconductor heterostructure field-effect transistors with Al2O3 of different thickness, Solid-State Electr. 52 (2008) 973-979.

1. Osvald, J.: In: ASDAM 2008. Piscataway: IEEE 2008. ISBN: 978-1-4244-2325-5. P. 319.
2. Chen H.: Proc. 9th Inter. Conf. Solid-State and Integr. Circuits (2008) 1443.
3. Selvaraj, S.L.: J. Electrochem. Soc. 156 (2009) H690.
4. Osvald, J.: J. Applied Phys. 106 (2009) 013708.
5. Maeda, N.: Phys. Status.Solidi C 6 (2009) S1049.
6. Maeda, N.: Proc. SPIE 7216 (2009) 721605.
7. Liu, Z.H.: Applied Phys. Lett. 95 (2009) 223501.
8. Bi, Z.W.: 2009 IEEE Inter. Conf. Electron Dev. Solid-St. Circuits (2009) 419.
9. Taking, S.: Electronics Lett. 46 (2010) 301.
•  10. Osvald, J.: In: ASDAM 2010. Piscataway: IEEE, 2010. ISBN: 978-1-4244-8572-7. P. 167.
11. Bi, Z.W.: Chinese Phys. B 19 (2010) 077303.
12. Kim, K,-W.: Microelectr. Engn. 88 (2011) 1225.
13. Liu, S.: Japan. J. Applied Phys. 50 (2011) 04DF10.
14. Esposto, M.: Applied Phys. Lett. 99 (2011) 133503.
15. Hung, T.-H.: Applied Phys. Lett. 99 (2011) 162104.
16. Osvald, J.: J. Applied Phys. 110 (2011) 073702.
17. Kirkpatrick, C.: Phys. Status Solidi C 8 (2011) Is. 7-8.
18. Bi, Z.W.: Chinese Phys. B 29 (2012) 028501.
19. Ji, D.: Applied Phys. Lett. 100 (2012) 132105.
20. Kirkpatrick, C.J.: IEEE Electron Device Lett. 33 (2012) 1240.
21. Osvald, J.: ASDAM 2012 (2012) art. no. 6418555, pp. 59.
22. Hung, T.-H.: Applied Phys. Lett. 102 (2013) 072105.
*   23. Osvald, J.: ADEPT 2013. Žilina: Univ. Žilina 2013. ISBN 978-80-554-0689-3. P. 36.
24. Meng, D.: IEEE Electron Device Lett. 34 (2013) 738.
25. Osvald, J.: J. Electronic Mater. 42 (2013) 1184.
26. Ji, D.: Thin Solid Films 534 (2013) 655.
27. Kambayashi, H.: Japan. J. Applied Phys. 52 (2013) SIUNSP 04CF09.
28. Pang, L.: 2013 IEEE Power Energy Conf. (2013) 8.
29. Osvald, J.: Phys. Status Solidi A 210  (2013) 1340.
30. Liu, X.: Applied Phys. Lett. 103 (2013) 053509.
31. Osvald, J.: Environmen. Sci Engn. (2014) 215.
32. Mazumder, B.: J. Applied Phys. 116 (2014) 134101.
33. Feng, Q.: Chinese Phys. Lett. 32 (2015) 017301.
34. Winzer, A.: J. Applied Phys. 118 (2015) 124106.
35. Hung, C.-W.: Solid-State Electron. 124 (2016) 5.
#   36. Zhou, X.J.: J. Applied Phys. 120 (2016) 125706.
37. Teramoto, A.: IEEE Electron Device Lett. 38 (2017) 1309.
38. Liu, J.: Sensors 18 (2018) 813.
39. Koide, Y.: IEEE Inter. Conf. Microelectr. Test Struct. 2019, p. 40.
40. Rahman, M.W.: Applied Phys. Lett. 119 (2021) 013504.

Novák, J., Hasenöhrl, S., Vávra, I., Sedláčková, K., Kučera, M., and Radnóczi, G.: Role of the V-III ratio and growth rate in decomposition of In0.27Ga0.73P/GaP grown by MOVPE, J. Crystal Growth 298 (2007) 76-80.

1. Park, K.W.: Applied Phys.Lett. 101 (2012) 051903.
2. Lu, X.F.: Mater. Sci Engn. B 284 (2022) 115882.

Gregušová, D., Stoklas, R., Čičo, K., Heidelberg, G., Marso, M., Novák, J., Kordoš, P., : Characterization of AlGaN/GaN MOSHFETs with Al2O3 as gate oxide, Physica Status Solidi c 4 (2007) 2720-2723.

1. Basu S.: J. Electrochem. Soc 157 (2010) H947.
2. Suria, A.J.: Semicond. Sci Technol. 31 (2016) 115017.
#   3. Senesky, D.G.: In Semiconductor-Based Sensors. World Sci Publ. 2016. ISBN: 978-981314673-0. P. 395-433.
4. Suria, A.J.: Applied Phys. Lett. 110 (2017) 253505.
5. Taoka, N.: Japan. J. Applied Phys. 57 (2018) 01AD04.
6. Calzolaro, A.: Materials 15 (2022) 791.

Gregušová, D., Kučera, M., Hasenöhrl, S., Vávra, I., Štrichovanec, P., Martaus, J., Novák, J., : Impact of growth conditions on the spatial non-uniformities of composition in InGaP epitaxial layers. Physica Status Solidi c 4 (2007) 1419-1422.

      1. Simon, J.: J. Applied Phys. 109 (2011) 013708.
2. Tomasulo, S.: IEEE J. Photovolt. 2 (2012) 56.

Kordoš, P., Gregušová, D., Stoklas, R., Čičo, K., and Novák, J.: Improved transport properties of Al2O3/AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect tranzistor, Applied Phys. Lett. 90 (2007) 123513.

1. Kuzmik, J.: IEEE Trans. Electron Dev. 55 (2008) 937.
2. Miczek, M.: J. Applied Phys. 103 (2008) art. no. 104510.
3. Arulkumaran, S.: Applied Phys. Express 2 (2009) 031001.
4. Selvaraj, S.L.: J. Electrochem. Soc. 156 (2009) H690.
5. Feng, Q.: Chinese Phys. B 18 (2009) 3014.
6. Miczek, M.: Japan. J. Applied Phys. 48 (2009) 04C092.
7. Maeda, N.: Phys. Status.Solidi C 6 (2009) S1049.
8. Maeda, N.: Proc. SPIE 7216 (2009) 721605.
9. Bi, Z.W.: Acta Physica Sinica 58 (2009) 7211.
10. Liu, Z.H.: Applied Phys. Lett. 95 (2009) 223501.
11. Zeng, H.Z.: J. Applied Phys. 107 (2010) 084508.
12. Tian, F.: J. Electrochem. Soc. 157 (2010) H557.
13. Kong, Y.C.: IEEE Electron Device Lett. 31 (2010) 93.
14. Liu, Z.H.: IEEE Electron Device Lett. 31 (2010) 96.
15. Basu S.: J. Electrochem. Soc 157 (2010) H947.
16. Eickelkamp, M.: Phys. Status Solidi A 207 (2010) 1342.
17. Mao, W.: Chinese Phys. Lett. 207 (2010) 128501.
18. Kim, K,-W.: Microelectr. Engn. 88 (2011) 1225.
19. Tajima, M.: Japan. J. Applied Phys. 50 (2011) 061001.
20. Liu, S.: Japan. J. Applied Phys. 50 (2011) 04DF10.
21. Zhou, B.: Chinese Phys. Lett. 28 (2011) 107303.
22. Tian, B.: Semicond. Sci Technol. 26 (2010) 085023.
23. Kayis, C.: J. Applied Phys. 109 (2011) 084522.
24. Kayis, C.: Proc. SPIE 7939 (2011) 79392F.
25. Eickelkamp, M.: Physica Status Solidi C 8 (2011) 2213.
#     26. Xue, F.: Guti Dianzixue Yanjiu Yu Jinzhan/Research Progress Solid State Electron. 31 (2011) 319.
27. Bi, Zhi-W.: Chinese Phys. Lett. 29 (2012) 028501.
28. Feng, Q.: Chinese Phys. B 21 (2012) 067305.
29. Liu, H.-Y.: IEEE Electron Device Lett. 33 (2012) 997.
30. Kong, Y.-C.: Chinese Phys. Lett. 29 (2012) 057702.
#     31. Pardeshi, H.: J. Semicond. 33 (2012) 124001.
32. Tian B.-L.: Chinese Phys. Lett. 30 (2013) 026101.
33. Seok, O.: Semicond. Sci Technol. 28 (2013) 025001.
34. Liu, X.: J. Applied Phys. 114 (2013) 027003.
35. Liu, H.-Y.: IEEE Trans. Electron Devices 60 (2013) 213.
36. Tapajna, M. .: Japan. J. Applied Phys. 52 (2013) SI08JN08.
#    37. Tian B.-L.: J. Semicond. 34 (2013) 094003.
38. Kubo, T.: Semicond. Sci Technol. 29 (2014) 045004.
39. Ye, D.: J. Phys. D 47 (2014) 255101.
40. Wang, X.: Nano Lett. 14 (2014) 3014.
41. Liu, H.-Y.: IEEE ISEEE 2014. 1-3 (2014) 591.
42. Zhu, J.-J.: IEEE Trans. Electron Dev. 62 (2015) 512.
43. Kubo, T.: Japan. J. Applied Phys. 54 (2015) 020301.
44. Freedsman, J. J.: Applied Phys. Lett. 107 (2015) 103506.
45. Zhou, X. J.: J. Applied Phys. 120 (2016) 125706.
46. Du, J.: Micro & Nano Lett. 11 (2016) 503.
47. Guo, Z.: Applied Phys. Lett. 109 (2016) 062903.
#     48. Hao, Y.: In Nitride Wide Bandgap Semicond. Mater. Electronic Devices. CRC Press 2016. ISBN: 978-149874513-0, pp. 1-368.
49. Takhar, K.: Solid-State Electr. 131 (2017) 39.
50. Zhu, J.: IEEE Trans. Electron Dev. 64 (2017) 840.
51. Lin, Y.-S.: J. Vacuum Sci Technol. B 35 (2017) 011209.
52. Zhu, J.-J.: Mater. Res. Express 4 (2017) 025902.
#     53. Xue, F.: Guti Dianzixue Yanjiu Yu Jinzhan/Res. Progress Solid State Electron. 37 (2017) 221+244.
54. Xing, W.: IEEE Electron Device Lett. 39 (2018) 947.
55. Guo, Z.: Phys. Rev. Applied 11 (2019) 024040.48.
56. Zhang, H.-S.: IEEE Trans. Electron Dev. 66(2019) 3302.
57. Mohanty, S.S.: J. Micromech. Microengn. 29 (2019) 084001.
58. Mohanty, S.S.: J. Nanoelectr. Optoelectron. 14 (2019) 923.
59. Zhu, J.: Semicond. Sci Technol. 35 (2020) 065017.
60. Verma, M.: Trans. Electric. Electron. Mater.‏ 21 (2020) 427.
61. Zhou, X.: Applied Phys. A‏ 126 (2020) 825.
62. Hwang, J. D.: Mater. Sci Engn. B 266 (2021) 115063.
63. Zhang, J.: Microelectron. J. 112 (2021) 105042.
64. Lee, J.H.: IEEE J. Electron Dev. Soc. 9 (2021) 728.
65. Zhang, S.: IEEE Electron Device Lett. 42 (2021) 1436.
#      66. Xue, F.:  Guti Dianzixue Yanjiu Yu Jinzhan/Res. Progress Solid State Electron. 41 (2021) 337.
67. Zhen, Z.X.: Phys. Status Solidi A 219 (2022) 2200010.
68. Cui, P.: Nanomater. 12 (2022) 1718.
69. Cong, Z.Z.: Applied Phys. Lett. 123 (2023) 212104.
70. Hwang, J.D.: Nanotechnol. 35 (2024) 045203.

Novák, J., Hasenöhrl, S., Vávra, I., and Kučera, M.: Influence of surface strain on the MOVPE growth on InGaP epitaxial layers. Applied Phys. 87 (2007) 511-516.

1. Nakano, T.: J. Crystal Growth 347 (2012) 25.
2. Bittner, Z.: 38th IEEE Photovoltaic Specialists Conf. (2012) 3158.
3. Peng, Y.: Comput. Mater. Sci 123 (2016) 65.
4. Hussain, Z.S.: J. Applied Phys. 119 (2016) 195702.
5. Knijn, P. J.: Phys. Chem. Chem. Phys. 18  (2016) 21296.
6. Gagliano, L.: Nano Lett. 16  (2016) 7930.
7. He, Y.: J. Mater. Sci-Mater. Electron. 30 (2019) 7203.

Reparaz, J., Bernardi, A., Goni, A., Alonso, M., Garriga, M., Novák, J., Vávra, I., : Phonon pressure coefficient as a probe of the strain status of self-assembled quantum dots. Applied Phys. Lett. 91 (2007) 081914.

   1. Tallman, R.E.: Physica Status Solidi B 246 (2009) 477.
2. Kladko, V.P.: J. Applied Phys. 105 (2009) 063515.
3. Dzhagan, V.M.: J. Applied Phys. 109 (2011) 084334.
4. Dzhagan, V.: Nanoscale Research Lett. 6 (2011) 79.
5. Hernandez, S.: J. Applied Phys. 114 (2013) 233101.
6. Kuo, M.H.: Nanotechnol. 26 (2015) 055203.
7. Ibanez, J.: Phys. Rev. B 92 (2015) 035432.
8. Kuo, M.H.: J. Applied Phys. 120 (2016) 233106.
9. Falcao, B.P.: Phys. Rev. Applied 11 (2019) 024054.
10. Dushaq, G.: Sci Rep. 9 (2019) 14221.
11. Dushaq, G.: Nanotechnol. 31 (2020) 315201.

Eliáš, P., Štrichovanec, P., Kostič, I., and Novák, J.Conformal, planarizing and bridging AZ5214-E layers deposited by a ‚draping‘ technique on non-planar III–V substrates, J. Micromech. Microengn. 16 (2006) 2608–2617.

1. Andok, R.: J. Electrical Engn. 64 (2013) 371.
2. Škriniarová, J.: Vacuum 111 (2015) 5.
3. Shin, S.-H.: Nanoscale 10 (2018) 20995.

Peternai, L., Kováč, J., Irmer, G., Hasenöhrl, S., Novák, J., and Srnánek, R.: Investigation of graded InxGa1-xP buffer by Raman scattering method, Microelectr. J. 37 (2006) 487-490.

1. Chen, L.: ACS Nano‏ 14 (2020)‏ 13127.
2. Kuznetsov, A.S.: IEEE Conf. Russian Young Res. Electr. Electron. Engn. – ElConRus 2021, p. 1325.
3. Park, H.: Sci Adv. 8 (2022) l6406.

Eliáš, P., Gregušová, D., Štrichovanec, P., Kostič, I., Novák, J., : Deposition of AZ5214-E layers on non-planar substrates with a “draping” technique. In: ASDAM 2006. Eds. J. Breza et al. Piscataway: IEEE 2006. ISBN: 1-4244-0396-0. P. 97-100.

1. Andok, R.: J. Electrical Engn. 64 (2013) 371.
2. Saller, K.B.: J. Vacuum Sci Technol. B 37 (2019) 040602.

Novák, J., Foit, J., and Janíček, V.: Coupling capacitances of connecting-lead systems in integrated circuits. In: ASDAM 2006. Proc. 6th Int. Conf. on Advanced Semiconductor Devices and Microsystems. Eds. J. Breza. et al. Piscataway: IEEE 2006. ISBN: 1-4244-0396-0. P. 39-42.

  1. Fan, L.: PRIME 2016.

Kučera, M. and Novák, J. : Optical characterization of gallium antimonide highly doped with manganese. J. Phys. Chem. Solids. 67 (2006) 1724-1730.

1. Dakhel, A.A.: Thin Solid Films 517 (2008) 886.
2. Ganesan, K.: Semicond. Sci Technol. 25 (2010) 105003.
3. Poltavtsev, S.V.: Phys. Rev. B 102 (2020) 014204.
4. Oveshnikov, L.N.: J. Magnet. Magnet. Mater. 563 (2022) 169873.

Stoklas, R., Čičo, K., Gregušová, D., Novák, J., Kordoš, P., : Preparation and properties of AlGaN/GaN MOSHFETs with MOCVD Al2O3 as gate oxide. In: ASDAM 2006. Piscataway: IEEE 2006. ISBN: 1-4244-0396-0. P. 249-252.

     1. Kong, X.: Chinese Phys. Lett. 29 (2012) 078502.

Novák, J., Hasenöhrl, S., Vávra, I., Kučera, M., : Spinodal-like decomposition of InGaP epitaxial layers grown on GaP substrates. Applied Surface Sci 252 (2006) 4178-4184.

1. Pastore, C.E.: Applied Surface Sci 256 (2010) 5681.
2. Feldman, E.P.: Phys. Rev. E 89 (2014) 062406.
3. Moskvin, P.P.: J. Phys. Studies ‏ 24 (2020) 1602.

Novák, J., Hasenöhrl, S., Kúdela, R., Kučera, M., : Growth and characterisation of InxGa1-xP layers with composition close to crossover from direct to indirect band gap. J. Crystal Growth 275 (2005) e1281-e1286.

     1. Wolos, A.: Spintronics 82 (2008) 325.
2. Kovac, J.: More Than Moore: Creating High Value Micro/Nanoelectr. Systems. Springer 2009. ISBN 0387755926.  P. 203-238.
3. Lankinen, A.: J. Crystal Growth 311 (2009) 4619.
4. Jenichen, A.: Physica Status Solidi B 247 (2010) 59.
5. Nicklas, J.W.: Applied Phys.Lett. 97 (2010) 091902.
6. Norizan, M. N.: IOP Conf. Ser.-Mater. Sci Engn. 209 (2017) 012029.

Gregušová, D., Bernát, J., Držík, M., Marso, M., Uherek, F., Novák, J., and Kordoš, P.: Influence of passivation induced stress on the performance of AlGaN/GaN HEMTs. Phys. Status Solidi c 2 (2005) 2619-2622.

1. Higashiwaki, M.: J. Applied Phys. 100 (2006) Art. No. 033714.
#     2. Desmaris, V.: Doktorsavhandlingar vid Chalmers Tekniska Hogskola (2006).
3. Higashiwaki, M.: Thin Solid Films 516 (2008) 548.
4. Lee, B.: Inter. Electron Devices Meeting 2010.
5. Jabli, F.: J. Alloys Compounds 650 (2015)  533.
6. Singh, S.P.: J. Phys. D 48 (2015) 365104.
7. Liu, C.: Semicond. Sci Technol. 32 (2017) 075003.
8. Bai, Z.: Solid-State Electr. 133 (2017) 31.
9. Ayachi, S.: J. Ovonic Research 13 (2017) 339.
10. Kumar, S.: Defence Sci J. 68 (2018) 572.
11. Zhu, G.: Semicond. Sci Technol. 33 (2018) 095023.
12. Cho, S.-J.: Electron. Lett. 54 (2018) 947.
13. Rawat, A.: Solid-State Electr. 164 (2020) 107702.
14. Kim, H.: J. Vacuum Sci Technol. B 37 (2020) 041203.
15. Ando, Y.: IEEE Trans. Electron Dev. 67 (2020) 5421.
16. Bhardwaj, N.: Physica Scripta 98 (2023) 015805.
17. Du, Y.M.: Physica Status Solidi A 221 (2024) Iss. 4.

Kordoš, P., Morvic, M., Betko, J., Novák, J., Flynn, J., Brandes, G., : Conductivity and Hall effect of free-standing highly resistive epitaxial GaN:Fe substrates. Applied Phys. Lett. 85 (2004) 5616-5620.

1. Gogova D.: J. Physics D 38 (2005) 2332.
2. Kashiwagi, T.: Japan. J. Applied Phys. 46 (2007) 581.
3. Bougrioua, Z.: J. Crystal Growth 300 (2007) 228.
4. Muret, P.: J. Applied Phys. 102 (2007) art. no. 053701.
5. Wolos, A.: Spintronics 82 (2008) 325.
6. Kovac, J.: More Than Moore: Creating High Value Micro/Nanoelectr. Systems. Springer 2009. ISBN 0387755926.  P. 203-238.
#    7.  Tao, Z.-K.: J. Nanjing Univ. Posts Telecomm. (Natural Sci 32 (2012) 153.
8. Cheng, J.: Modern Phys. Lett. B 28 (2014) 1450031.
9. Horita, M.: Applied Phys. Express 13 (2020) 071007.
10. Oishi, T.: J. Comput. Electron. 20 (2021) 2441.
11. Fukuda, H.: Applied Phys. Express 15 (2022) 071003.
12. Tanaka, D.: J. Applied Phys. 133 (2023) 055701.
13. Odani, T.: J. Crystal Growth 622 (2023) 127389.

Hasenöhrl, S., Novák, J., Vávra, I., Šatka, A., : Material properties of graded composition InxGa1−xP buffer layers grown on GaP by organometallic vapor phase epitaxy. J. Crystal Growth 272 (2004) 633-641.

1. Sharma, T.K.: Semicond. Sci Technol. 23 (2008) 075031.
2. Sun, Y.R.: J. Crystal Growth 381 (2013) 70.
#     3. Gillan, E.G.: In Reference Module in Chemistry, Molecular Sci and Chemical Engn. Comprehensive Inorganic Chemistry II (Second Ed.): From Elements to Applications. Elsevier: 2013, Pp 969–1000.
4. Lu, X.F.: Mater. Sci Engn. B 284 (2022) 115882.
5. Wang, J.X.: CRYSTENGCOMM 25 (2023) 2326.

Kicin, S., Kromka, A., Kúdela, R., Hasenöhrl, S., Schwarz, A., Novák, J., : Micro-Raman study of InGaP composition grown on V-grooved substrates. Materials Sci Engn. B 113 (2004) 111-116.

1. Smyth, T.: IEEE J. Photovolt. 6 (2016) 166.
2. Yaccuzzi, E.: J. Phys. D 54 (2021) 115302.

Novák, J., Hasenöhrl, S., Kučera, M., Šoltýs, J., : Nano-patterning surfaces by the self-organized growth of ordered and strained epitaxial layers. Superlatt. Microstruct. 36 (2004) 123-131.

      1. Zhou, J.: Microelectr. J. 38 (2007) 1207.
2. Kaiju, H.: Applied Surface Sci 255 (2009) 3706.

Hasenöhrl, S., Novák, J., Kúdela, R., Betko, J., Morvic, M., Fedor, J., : Anisotropy in transport properties of ordered strained InGaP. J. Crystal Growth 248 (2003) 369.

1. Sigman, M.B.: J. American Chemical Soc. 127 (2005) 10089.
2. Huang R.-R.: Chinese J. Struct. Chem. 34 (2015) 594.
3. Martin, G.: ACS Applied Electron. Mater. 4 (2022) 3478.

Novák, J., Hasenöhrl, S., Kúdela, R., Kučera, M., Alonso, M., Garriga, M., : Influence of ordered and random parts on properties of InGaP alloy grown by MOVPE. In: EW MOVPE X. Univ. Lecce 2003. P. 161.

      1. Zakaria, A.: J. Applied Phys. 108 (2010) 074908.

Hasenöhrl, S., Kúdela, R., Novák, J., Tuomi, T., Knuuttila, L., : Anisotropic surface structure in ordered strained InGaP. Materials Sci Engn. B 88 (2002) 134-138.

#        1. Cao, X.: Jingti Xuebao/J. Synthetic Crystals 39 (2010) 1406.
2. Ye, Z.C.: Trans. Nonferrous Metals Soc China 21 (2011) 146.
3. Kim, T.W.: J. Vacuum Sci Technol. A 35 (2017) 031507.

Novák, J., Hasenöhrl, S., Kúdela, R., Kučera, M., Alonso, M., Garriga, M., : Effect of strain and ordering on the band-gap energy of InGaP. Materials Sci Engn. B 88 (2002) 139-142.

1. Kakumu, T.: Japan. J. Applied Phys. 42 (2003) 2230.
2. Yang, M.D.: Optics Express 16 (2008) 15754.
3. Yang, M.D.: Japan. J. Applied Phys. 47 (2008) 4499.
4. Longo, M.: J. Crystal Growth 311 (2009) 4293.
5. Jakomin, R.: Thin Solid Films 520 (2012) 6619.
6. Sodabanlu, H.: Solar Energy Mater. Solar Cells 257 (2023) 112402.

Kicin, S., Cambel, V., Kuliffayová, M., Gregušová, D., Kováčová, E., Novák, J., Kostič, I., Förster, A., :Fabrication of GaAs symmetric pyramidal mesas prepared by wet-chemical etching using AlAs interlayer. J. Applied Physics 91 (2002) 878-880.

1. Deneke, C.: Physica E 23 (2004) 269.
2. Golod, S.V.: Thin Solid Films 489 (2005) 169.
3. Da Silva, F.C.S.: Applied Phys. Lett. 92 (2008) 142502.
4. Liang, Z.W.: J. Applied Phys. 108 (2010) 074313.
5. Nelson, G.T.: Solar Energy Mater. Solar Cells 242 (2022) 111757.

Kučera, M., Novák, J., : Photoluminescence characterisation of Bismuth doped GaSb. In: ASDAM ’02. Ed. J.Breza and D.Donoval. Piscataway: IEEE 2002. ISBN: 0-7803-7276-X. P. 149.

1. Segercrantz, N.: AIP Conf. Proc. 1583 (2014) 174.
2. Segercrantz, N.: Applied Phys. Lett. 105 (2014) 082113.
3. Fang, D.: Nanosci Nanotechnol. Lett. 7 (2015) 117.
4. Hall, M.J.: Micromachines 14 (2023) 1801.

Cambel, V., Kicin, S., Kuliffayová, M., Kováčová, E., Novák, J., Kostič, I., Förster, A., : Preparation of patterned GaAs structures for MEMS and MOEMS. Materials Sci Engn. C 19 (2002) 161-165.

      1. Pirzada, D.: J. Applied Phys. 102 (2007) 013519.
*    2. Gopal, M.: PhD Thesis. Nat. Univ. Singapore 2008.
3. Jiang, S.: IEEE Sensors J. 16 (2016) 4816.

Kúdela, R., Kučera, M., Novák, J., Ferrari, C., Pelosi, C., : Study of narrow InGaP/(In)GaAs quantum wells. J. Crystal Growth 242 (2002) 132-140.

      1. Begotti, M.: Applied Surface Sci 222 (2004) 423.
*    2. Gladkov, P.: ASDAM 2004. Piscataway: IEEE 2004. S. 17.
3. Saly, V.: Renewable Energy 31 (2006) 865.
4. Ichikawa, O.: J. Crystal Growth 298 (2007) 85.
5. Longo, M.: J. Crystal Growth 311 (2009) 4293.

Novák, J., Hasenöhrl, S., Alonso, M., Garriga, M., : Influence of tensile and compressive strain on the band gap energy of ordered InGaP. Applied Phys. Lett. 79 (2001) 2758-2760.

       1. Scardova, S.: Physica Status Solidi A 195 (2003) 50.
2. Kinaci, B.: J. Mater. Sci-Mater. Electron. 24 (2013) 1375.
3. Hussein, M.T.: Indian J. Phys. 87 (2013) 1079.
#     4. Khan, H.A.: IEEE J. Quantum Electron. 50 (2014) 1044.
#     5. Zhang, Y.: European Microwave Week  2014 – EuMW 2014. Art. no. 6986486, p. 524.
#     6. Kahle, H.: In Vertical External Cavity Surface Emitting Lasers: VECSEL Technology and Applications. WILEY‐VCH GmbH 2022, pp. 197-2281.

Kicin, S., Novák, J., Hasenöhrl, S., Kučera, M., Meertens, D., : Photoluminescence characterization of InGaP/GaAs/InGaP quantum wires. Materials Sci & Engn. B 80 (2001) 184-187.

      1. Kwon, S.: Physical Rev. E 73 (2006) 025102.

Kúdela, R., Kučera, M., Olejníková, B., Eliáš, P., Hasenöhrl, S., Novák, J., : Formation of interfaces in InGaP/GaAs/InGaP quantum wells. J. Crystal Growth 212 (2000) 21-28.

1. Nakano, T.: J. Crystal Growth 221 (2000) 136.
2. Wallart, X.: Applied Phys. Lett. 81 (2002) 1086.
3. Wallart, X.: Phys. Rev. B 68 (2003) 235314.
*    4. Begotti, M.: 10th European Workshop on MOVPE. Lecce 2003.
5. Gladkov, P.: ASDAM 2004. Piscataway: IEEE 2004. P. 17.
6. Oliveira, C.L.N.: Applied Surface Sci 234 (2004) 38.
7. Laureto, E.: Inter. J. Modern Phys. B 18 (2004) 1743.
8. Chang, Y.M.: Applied Phys. Lett. 84 (2004) 2548.
9. Pelosi, C.: Crystal Research Technol. 40 (2005) 982.
10. Ribeiro, E.: Phys. Rev. B 73 (2006) 075330.
11. Pelosi, C.: J. de Physique IV 132 (2006) 205.
12. Zhang, X.B.: J. Electronic Mater. 35 (2006) 705.
13. Bosi, M.: Progress in Photovoltaics 15 (2007) 51.
14. Frigeri, C.: J. Electrochem. Soc. 156 (2009) H448.
15. Frigeri, C.: Superlatt. Microstr. 45 (2009) 451.
16. Silva, A.A.P.: J. Applied Phys. 106 (2009) 083521.
17. Frigeri, C.: Nanoscale Research Lett. 6 (2011) 194.
18. Bender, D.A.: Applied Phys. Lett. 102 (2013) 252102.
19. Wells, N.P.: J. Applied Phys. 118 (2015) 065703.
20. Ladugin, M. A.: Inorganic Mater. 55 (2019) 315.

Mareš, J., Krištofik, J., Hubík, P., Feng, X., Novák, J., Hasenöhrl, S., : Highly disordered two-dimensional electron systém in a weak magnetic field Europhys. Lett. 45 (1999) 374-380.

      1. Horváth, Zs.J.: Proc. SPIE 4746 (2002) 265.
2. Horváth, Zs.J.: Current Applied Phys. 6 (2006) 205.

Betko, J., Morvic, M., Novák, J., Förster, A., Kordoš, P., : Magnetoresistance in low-temperature grown molecular-beam epitaxial GaAs J. Applied Phys. 86 (1999) 6243-6248.

     1. Morinaga,Y.: Physica E 10 (2001) 391.
*   2. Griebel, M.: Dr. rer. nat. Arbeit. Univ. Stuttgart. München: 2002
3. Wang, D.: IEEE Trans. Nanotechnol. 4 (2005) 460.
4. Nemcsics, A.: Semiconductors 39 (2005) 1352.
5. Michel, C.: Applied Phys. Lett. 89 (2006) 112116.

Kicin, S., Novák, J., Kučera, M., Hasenöhrl, S., Eliáš, P., Vávra, I., Hudek, P., : Preparation of stair-step grooves by wet etching of AlAs/GaAs heterostructures and MOCVD growth of QWR Materials Sci Engn. B 65 (1999) 106-110.

      1. Clawson A.R.: Materials Sci Engn. R 31 (2001) 1.
*    2. Gopal, M.: PhD Thesis. Nat. Univ. Singapore 2008.

Eliáš, P., Cambel, V., Hasenöhrl, S., Hudek, P., Novák, J., : SEM and AFM characterisation of high MESA patterned InP subtrated prepared by wet etching Mater. Sci Engn. B 66 (1999) 15-20.

     1. Clawson, A.R.: Materials Sci Engn. R 31 (2001) 1.
2. Bandaru, P.: Materials Res. Soc. Symp. – Proc. 782 (2003) 471.
3  Kim, J.-H.: J. Electronic Mater. 37 (2008) 361.

Kordoš, P., Novák, J., : (Eds.) Heterostructure epitaxy and devices – HEAD ’97. Dordrecht: Kluwer Acad. Pub 1998. ISBN 0-7923-5013-8.

     1. Wang, H.-Q.: J. Electron Spectros. Related Phenomena 114-116 (2001) 483.
2. Vikulina, Yu. I.: Mechan. Solids 45 (2010) 778.
3. Nandipati, G.: J. Comp. Phys. 231(2012) 3548.

Cambel, V., Kúdela, R., Gregušová, D., Hasenöhrl, S., Eliáš, P., Novák, J., : Characterization of 2DEG Hall probes in high magnetic field at 4,2K. In: ASDAM 98. Ed. J.Breza. Piscataway: IEEE 1998. P. 31.

          1. Gonzalez-Jorge, H.: Cryogenics 46 (2006) 736.

Cambel, V., Gregušová, D., Eliáš, P., Hasenöhrl, S., Olejníková, B., Novák, J., Schaepers, T., Neurohr, K., Fox, A., : Characterization of InGaAs/InP microscopic Hall probe arrays with 2DEG active layer Mater. Sci Engn. B 51 (1998) 188.

      1. Bydžovský, J.: Sensors Actuators A 91 (2001) 21.
2. Vavra, I.: Sensors Actuators A 91 (2001) 177.

Hasenöhrl, S., Kučera, M., Novák, J., Bujdák, M., Eliáš, P., Kúdela, R., : MOCVD growth of InxGa1-xAs/GaAs multiple quantum well and superlattice structures for optical modulators Solid State Electron. 42 (1998) 263.

     1. Donkor, E.: Semiconductors Semimetals 73 (2001) 15.

Morvic, M., Betko, J., Novák, J., Kordoš, P., Förster, A., : On the hopping and band conductivity in molecular beam epitaxial low-temperature grown GaAs Physica Status Solidi (b) 205 (1998) 125.

#      1. Gudmudsson, J.T.: SIMC-XII-2002. Piscataway: IEEE 2002. P. 9.
2. Gudmundsson, J.T.: Physica B 340 (2003) 324.
3. Svavarsson, H.G.: Phys. Rev. B 67 (2003) 205213.

Mareš, J., Krištofik, J., Hubík, P., Hulicius, E., Melichar, K., Pangrác, J., Novák, J., Hasenöhrl, S., : Out-of-plane weak localization in two-dimensional electron structures Phys. Rev. Lett. 80 (1998) 4020.

      1. Raichev, O.E.: J. Phys.-Condensed Matter 12 (2000) 589.
2. Shlimak, I.: Phys. Rev. B 61 (2000) 7253.
3. Shlimak, I.: Philos. Magazine B 81 (2001) 1093.
4. Ganichev, S.D.: Phys. Rev. B 63 (2001) 201204.
5. Zumbuhl, D.M.: Phys. Rev. B 69 (2004) Art. No. 121305.
*    6. Zumbuhl, D.M.: PhD Thesis. Massachusetts: Harvard Univ. Cambridge,
(2004).

Cambel, V., Eliáš, P., Kúdela, R., Novák, J., Olejníková, B., Mozolová, Ž., Majoros, M., Kvitkovič, J., Hudek, P., : Preparation, characterization and application of microscopic Hall probe arrays Solid State Electron. 42 (1998) 247.

      1. Kahng, Y.H.: J. Korean Phys. Soc 69 (2016) 1456.

Novák, J., Hasenöhrl, S., Kúdela, R., Kučera, M., : Resistivity anisotrophy in ordered InGaP grown at 640 C Applied Phys. Lett. 73 (1998) 369.

1. Fink, V.: Applied Phys. Lett. 79 (2001) 2384.
2. Li, J.H.: Phys. Rev. B 63 (2001) 155310.
3. Jakomin, R.: Thin Solid Films 520 (2012) 6619.
4. Martin, G.: ACS Applied Electron. Mater. 4 (2022) 3478.

Novák, J., Hasenöhrl, S., Kučera, M., Hjelt, K., Tuomi, T., : Sulphur doping of GaSb grown by atmospheric pressure MOVPE J. Crystal Growth 183 (1998) 69.

      1. Wiersma, R.D.: Phys. Rev. B 67 (2003) 165202.
2. Han, F.: Chem. Phys. Lett. 651 (2016) 183.

Novák, J., Kučera, M., Morvic, M., Betko, J., Förster, A., Kordoš, P., : Characterization of low-temperature GaAs by galvanomagnetic and photoluminiscence measurements Mater. Sci Engn. B 44 (1997) 341.

     1. Wang, J.S.: J. Vacuum Sci Technol. B 19 (2001) 202.

Malacký, L., Kúdela, R., Morvic, M., Novák, J., Wehmann, H., : Properties of silicon-pulse-doped InGaP layers grown by LP- MOCVD Mater. Sci Engn. B 44 (1997) 33.

      1. Magnanini, R.: Thin Solid Films 516 (2008) 6734.
2. Schenk, H.P.D.: Applied Phys. Express 5 (2012) 025504.
3. Jakomin, R.: Thin Solid Films 520 (2012) 6619.

Kúdela, R., Novák, J., Kučera, M., : Zn-doped InGaP grown by the LP-MOCVD J. Electron. Mater. 25 (1997) 7.

1. Piskorski, L.: Semicond. Sci Technol. 22 (2007) 593.
2. Piskorski, L.: Opto-Electronics Rev. 16 (2008) 34.
3. Piskorski, L.: Applied Phys. A 98 (2010) 651.
4. Sodabanlu, H.: Solar Energy Mater. Solar Cells 257 (2023) 112402.

Kordoš, P., Betko, J., Morvic, M., Novák, J., Förster, A., : Conductance properties of as-grown and annealed MBE GaAs layers grown at temperatures between 200 and 420oC. In: SIMC ´96. Ed. C. Fontaine. Toulouse: IEEE 1996. P. 37.

*      1. Gudmudsson, J.T.: SIMC-XII-2002. Piscataway: IEEE 2002. P. 9.

Betko, J., Morvic, M., Novák, J., Förster, A., and Kordoš, P.: Hall mobility analysis in low-temperature-grown molecular beam epitaxial GaAs Applied Phys. Lett. 69 (1996) 2563.

1. Vilisova, M.D.: Semiconductors 33 (1999) 824.
2. Shimogishi, F.: Phys. Rev. B 65 (2002) 16531.
3. Lavrent’eva, L.G.: Crystallography Rep. 47 (2002)  S118.
4. Krotkus, A.: IEE Proc. – Optoelectr. 149 (2002) 111.
*     5. Griebel, M.: Dr. rer. nat. Arbeit. Univ. Stuttgart. München: 2002
6. Noh, J.P.: Phys. Rev. B 67 (2003) 075309.
7. Lavrent’eva, L.G.: J. Structural Chem. 45 (2004) S88.
8. Matsui, H.: J. Applied Phys. 99 (2006) 124307.
#     9. Lavrentieva, L.G.: Russian Phys. J. 49 (2006) 1334.
10. Wang, X.: Semicond. Sci Technol. 22 (2007) 65.
11. Matsui, H.: Proc.SPIE  6474 (2007) 64740O.
12. Nargelas, S.: Applied Phys. Lett. 98 (2011) 082115.
13. Missous, M.: IEEE Sensors J. 13 (2013)  63.
14. Missous, M.: Handbook of Terahertz Technol. Imaging, Sensing and Comm. Woodhead Publ. Ser. Electr. Optical Mater. 34 (2013) 464.
15. Fekecs, A.: Nuclear Instrum. Methods in Phys. Res. B 359 (2015) 7899.
16. Juul, L.: Proc. SPIE 9585 (2015) 95850K.
17. Khusyainov, D. I.: Inter. J. Modern Phys. B 31 (2017) 1750195.
18. Afalla, J.: Sci Rep.‏ 10 (2020) 19926.

Novák, J., : Characterization of epitaxial layers using lift-off technique. In: HEAD 95. Eds. J.Novák et el. NATO ASI Series 3, High Technol. 11. Dordrecht: Kluwer Acad. Publ. 1996. P. 173.

     1. Papavassiliou, G.C.: Progress in Solid State Chem. 25 (1997) 125.

Kováč, J., Uherek, F., Šatka, A., Waclawek, J., Jakabovič, J., Srnánek, R., Rheinländer, B., Gottschalch, V., Hasenöhrl, S., Novák, J., Barna, A., Wood, J., : InAlGaAS-InGaAs-InP RCE PIN Photodiode for 1300nm wavelength region. In: 8th Inter. Conf. Indium Phosphide Related Materials – IPRM ’96. Ed. J.Lorenzo. Piscataway: IEEE 1996. P. 219.

#     1. Jervase, J.A.: IEEE J. Quantum Electronics 36 (2000) 325.
#     2. El-Batawy, Y.M.: Proc. SPIE 4999 (2003) 363.
#     3. El-Batawy, Y.: In Photodetectors. Woodhead Publ. 2016. ISBN: 978-1-78242-445-1. P. 415-470.

Novák, J., Kučera, M., Lauer, S., Benz, K., : Photoluminiscence characterization of sulphur-doped GaSb grown by liquid phase electroepitaxy J. Crystal Growth 158 (1996) 1-5.

1. Swiatek, K.: Acta Phys. Polonica A 90 (1996) 1100.
2. Gladkov, P.: Semicond Sci Technol. 12 (1997) 1409.
3. Lvova, T.V.: IEE Proc.-Optpelectr. 145 (1998) 303
4. Papis, E.: Vacuum 57 (2000) 171.
5. Agert, C.: Semicond Sci Technol. 17 (2002) 39.
6. Vankova, V.: J. Crystal Growth 248 (2003) 279.
7. Herrera, D.J.: J. Vacuum Sci Technol. B 37 (2019) 031214.

Novák, J., Morvic, M., Betko, J., Förster, A., Kordoš, P., : Wet chemical separation of low-temperature GaAs layes from their GaAs substrate Materials Sci Engn. B 40 (1996) 58.

*     1. Skriniarová, J.: J. Electr. Engn. 47 (1996) 186.
*     2. Dankowski, S.: Non-Stoichiometric (Al)GaAs as a Key Material for Ultrafast Electronics  and Optics – Static and Dynamic Investigations of Electroabsorbtion. Erlangen-Nürnberg: Friedrich Alexander-Univ. 1998.
*     3. Marek, T.: 2nd Symposium on Non-Stoichiometric III-V Compounds. Erlangen-Nurnberg: Friedrich-Alexander-Univ. 1999. P. 103.
4. Chern, J.H.: Terahertz and Gigahertz Electr. Photonics II. 4111 (2000) 232.
5. Clawson, A.R.: Materials Sci Engn. R 31 (2001) 1.
6. Renteria, E.J.: IEEE Photovoltaic Spec. Conf. 2013, Art. no 6744973, p. 2459.
#     7. Renteria, E.J.: In Nano-CMOS and Post-CMOS Electronics: Devices and Modelling. IET 2016. ISBN: 9781849199971.  P. 35.

Novák, J., Eliáš, P., : A silicon-InGaAs tandem photodetector for radiation thermometry Measurement Sci Technol. 6 (1995) 1547.

          1. Zhou, X.: IEEE Trans. Electron Dev. 61 (2014) 838.

Kordoš, P., Förster, A., Betko, J., Morvic, M., Novák, J., : Semi-insulating GaAs layers grown by molecular-beam epitaxy Applied Phys. Lett. 67 (1995) 983.

    1. Goo,: Applied Phys. Lett. 68 (1996) 841.
*   2. Look, D.C.: In: Properties of Gallium Arsenide. London: IEE INSPEC 1996. P. 284.
*   3. Nguyen, N.X.: In: Properties of Gallium Arsenide. London: IEE INSPEC 1996. P. 689.
*   4. Dankowski, S.: Non-Stoichiometric (Al)GaAs as a Key Material for Ultrafast Electronics and Optics-Static and Dynamic Investigations of Electroabsorbtion. Erlangen-Nürnberg: Friedrich Alexander-Univ. 1998.
5. Stellmacher, M.: Applied Phys. Lett. 74 (1999) 1239.
6. Watanabe, K.: Japan. J. Applied Phys. 39 (2000) L79.
*   7. Steen, Ch.: In: Proc. 8th Conf. Terahertz Elect. Berlin, VDE Verlag 2000. P. 59.
8. Steen, Ch.: Physica B 308 (2001) 1177.
9. Tautz, S.: Proc. 25th Inter. Conf. Phys. Semicond. 87 (2001) 1431.
10. Steen, Ch.: Materials Sci & Engn. B 88 (2002) 191.
11. Nemcsics, A.: Semiconductors 39 (2005) 1352.
12. dela Rosa, L.N.F.: Semicond. Sci Technol. 39 (2024) 075010.

Novák, J., Klaus, M., Benz, K., : Sulphur incorporation in GaSb layers grown by liquid phase electroepitaxy J. Crystal Growth 139 (1994) 206.

     1. Zytkiewicz, Z.R.: Acta Physica Polonica 88 (1995) 965.
2. von Eichel-Streiber, C.: J. Crystal Growth 170 (1997) 783.
*    3. Lauer,  S.: Störstellen in  Galliumantimonid. Aachen: Shaker Verlag 1997.

Dubecký, F., Novák, J., Kordoš, P., : An efficient and low cost optical excitation system: Application to deep-level spectroscopy Measurement Sci Technol. 4 (1993) 538.

*      1. Darmo, J.: Kandidátska dizertačná práca. Bratislava: ElÚ SAV 1996.

Malacký, L., Novák, J., Mikhailova, M., : Electrical properties of Al/GaInAsSb contacts Physica Status Solidi A 123 (1991) K25.

     1. Polyakov, A.Y.: Solid State Electr. 36 (1993) 649.
2. Polyakov, A.Y.: Solid State Electr. 38 (1995) 525.

Novák, J., Hasenöhrl, S., Kuliffayová, M., : Gettering properties of PrO2 in In0.53Ga0.47As LPE growth J. Crystal Growth 110 (1991) 862.

     1. Wu, M.-CH.: Japan. J. Applied Phys. 30 (1991) 2679.
2. Lai, M.Z.: J. Applied Phys. 72 (1992) 1312.
3. Amano, T.: Japan. J. Applied Phys. 31 (1992) 2185.
4. Wu, M.C.: J. J. Applied Phys. 71 (1992) 456.
5. Yamaguchi, T.: Japan. J. Applied Phys. 1 32 (1993) Suppl 664.
6. Wu, M.C.: Japan. J. Applied Phys. 32 (1993) 2587.
7. Wu, M.C.: J. Crystal Growth 139 (1994) 251.
8. Jiang, G.C.: J. Crystal Growth 152 (1995) 127.
9. Lai, M.Z.: Crystal Res. Technology 30 (1995) 433.
10. Ho, W.J.: IEEE Trans. Electron Dev. 42 (1995) 639.
11. Choi, S.J.: J. Korean Phys. Soc 28 (1995) S145.
12. Jiang, G.C.: Cryst. Res. Tech. 31 (1996) 365-371.
13. Jiang. G.C.: Japan. J. Applied Phys. 35 (1996) 2020-2024.
14. Chang. L.B.: Cryst. Res. Tech. 31 (1996) 911-915.
15. Chang, L.B.: IoP Conf. Ser. I 155 (1997) 291.
*   16. Hjelt K.  Photoluminescence  and  growth of  compound semi-condutors, Espoo, 1997.
17. Chang L.B.: Japan. J. Appl. Phys. 36 (1997) 7264.
18. Chang L.B.: Japan. J. Appl. Phys. 36 (1998) 811.
19. Chang, L.B.: J. Crystal Growth 199 (1999) 1092.
20. Cheng, Y.C.: Microelectr. Engn. 65 (2003) 223.
#   21. Procházková, O.: Physica Status Solidi C 2 (2005) 1269.
22. Hassan, M.: Central Europ. J. Phys. 4 (2006) 117.

Kordoš, P., Novák, J., Kayser, O., Heime, K., : Schottky barrier enhancement of /n/ GaInAs with GaInP layer, Phys. Status Solidi A 127 (1991) 25.

*    1. Marso, M.: Julich: KFA (1991) 107.
2. Sugino, T.: Japan. J. Appl. Phys. 32 (1993) L239.
3. Polyakov, A.Y.: Solid State Electr. 36 (1993) 649.

Kourkoustas, C., Novák, J., Kuliffayová, M., Papaioannou, G., Kordoš, P., Ioannou-Sougleridis, V., : Transport properties of praseodymium doped p-type In0.53Ga0.47As layers Solid State Comm. 78 (1991) 543.

     1. Chin, V.W.L.: J. Applied Phys. 72 (1992) 1410.
2. Chin, V.W.L.: Solid State Electr. 35 (1992) 1247.
*     3. Adachi,  S.: Physical Properties of III-V Semicond. Compounds. New York: J.Willey 1992.

Novák, J., Malacký, L., : Metal-semiconductor-metal photodetector on p-type In0.53Ga0.47As Electronics Lett. 26 (1990) 704.

     1. Bachert, H.: Mater. Sci. Engn. B 9 (1991) 345.

Malacký, L., Kordoš, P., Novák, J., : Schottky barrier contacts on /p/ -GaInAs Solid-State Electr. 33 (1990) 273.

1. Rao, M.V.: J. Applied Phys. 70 (1991) 3943.
*    2. Beneking, H.: Halbleiter  –  Technologie. Stuttgart: 1991.
3. Turut, A.: Physica B 179 (1992) 285.
4. Thirstup, C.: Applied Phys. Lett. 61 (1992) 2641.
5. Singh, A.: J. Applied Phys. 74 (1993) 6714.
6. Parker, T.R.: Applied Phys. Lett. 65 (1994) 2711.
7. Leech, P.W.: J. Vacuum Sci Technol. B 16 (1998) 227
8. Shamir, N. : Solid-State Electronics 45 (2001) 475.
9. Mehari, S.: Applied Phys. Lett. 101 (2012) 072103.
10. Maeda, T.: Applied Phys. Lett. 121 (2022) 232102.

Novák, J., Kuliffayová, M., Morvic, M., Kordoš, P., : Growth and properties of low-doped In0.53Ga0.47As LPE layers using rare earth oxides J. Crystal Growth 96 (1989) 645.

1. Wu, M.-CH.: Japan. J. Applied Phys. 30 (1991) 2679.
*    2. Hasenöhrl,  S.:  Optoelectronics  Laboratory Annual Report. Helsinki: Univ. Technol. 1991. P. 37.
3. Tilly, L.P.: Phys. Rev. B 47 (1993) 1249.
4. Yamaguchi, T.: Japan. J. Applied Phys. 1 32 (1993) Suppl664.
5. Gong, X.Y.: Japanese J. of Appl. Phys. 33 (1994) 1740.
*   6. Shur, M.: Handbook Series of Semicond. Parameters. World Sci 1995.
7. Lai, M.Z.: Crystal Res. Technology 30 (1995) 433.
8. Chang, L.B.: Cryst. Res. Tech. 31 (1996) 911-915.
9. Chang, L.B.: Inst. of Physics Conf. Ser. I 155 (1998) 291.
10. Chang L.B.: Jpn.J. Appl. Phys. 36 (1998) 7246.
11. Chang L.B.: Jpn.J. Appl. Phys. 36 (1998) 811.
12. Pal, R.: Material Sci Bull. 33 (1998) 261.
13. Chang, L.B.: J. Crystal Growth 199 (1999) 1092.
14. Joshi, R.: IEEE Trans. Electron Dev. 69 (2022) 4175.
15. Xiong, W.S.: Photonics 10 (2023) 471.

Novák, J., Malacký, L., Morvic, M., Kordoš, P., : Dependence of InGaAs photodiode characteristics on the composition of the ternary, Crystal Propert. Preparation 12 (1987) 307.

*    1. Zima, V.:  Sci Technol. in Czechoslovakia. Erlangen 1989.

Malacký, L., Novák, J., Kordoš, P., : Study of dark current in Ga1-xInxAs/GaAs diodes, Crystal Propert. Preparation 12 (1987) 303.

*    1. Zima, V.:  Sci Technol. in Czechoslovakia. Erlangen 1989.

Morvic, M., Štofanik, F., Novák, J., Kordoš, P., : Fotodetektory pre optickú komunikáciu v rozsahu 1,3µm. In: Optické komunikácie 84. Praha: ČSVTS 1984. S. 98.

*    1. Hájková, E.: Elektrotechn. časopis 36 (1985) 915.
*    2. Macháč, J.:  Fotodetektory pro  optické sdělovací systémy. Praha: Academia 1989.
*    3. Zima, V.:  Sci Technol. in Czechoslovakia. Erlangen 1989.

Novák, J., Kúdela, R., Morvic, M., : Fototranzistor pre pásma 1,0-1,2µm. In: Optické komunikácie 84. Praha: ČSVTS 1984. S. 73.

*    1. Kordoš, P.: Elektrotechn. časopis 36 (1985) 924.

Dubecký, F., Novák, J., Kordoš, P., : Observation of deep traps in LPE(p)AlGaAs-(n)GaAs heterojunctions for avalanche photodiode applications. In: 4th Int. Conf. Deep Level Impurities in Semicond. Eger 1983. P. 90.

     1. Brehme, S.: Solid State Comm. 59 (1986) 469.
2. Brehme, S.: Semicond. Sci. Technol. 7 (1992) 467.

Novák, J., Morvic, M., Kordoš, P., : High gain (p) AlGaAs-(n) GaAs heterojunction avalanele photodiodes Solid-State Electr. 25 (1982) 82.

     1. Ito, J.: Electron. Lett. 19 (1983) 523.
*    2. Winstel,  G.:  Optoelektronik  II.  Berlin, Springer Verlag 1986.
*    3. Zima, V.:  Sci and  Technology in  Czechoslovakai. Erlangen 1989.

Novák, J., Morvic, M., Štofanik, F., : Vplyv mriežkových porúch na vlastnosti fotodiod. In: 5. čs. konf. o GaAs. Bratislava: ElÚ SAV 1982. S. 144.
*    1. Kordoš, P.: Elektrotechn. časopis 36 (1985) 924.

Morvic, M., Novák, J., Štofanik, F., Lajda, J., : Mapovanie citlivosti fotodiod pomocou zariadenia na riadkovanie laserového lúča, Elektrotechn. časopis 32 (1981) 920.
*    1. Kordoš, P.: Elektrotechn. časopis 36 (1985) 924.
2. Borkovskaya, O.Y.: Sov. Phys. Se. R. 20 (1986) 200.

Novák, J., : Lavínové fotodiody heteropriechodom GaAs/GaAlAs. In: 4. čs. konf. o GaAs. Praha: ČSVTS 1979. S. 72.
*    1. Macháč, J.: Fotodetektory pro optické sdělovací systémy. Praha: Academia 1989.