RNDr. Haščík Štefan, PhD.

Šichman, P., Stoklas, R., Hasenöhrl, S., Gregušová, D., Ťapajna, M., Hudec, B., Haščík, Š., Hashizume, T., Chvála, A., Šatka, A., and Kuzmík, J.: Vertical GaN transistor with semi-insulating channel, Physica Status Solidi (a) 220 (2023) SI2200776.

1. Woo, K.: J. Phys.-Mater. 7 (2024) 022003.

Gregušová, D., Dobročka, E., Eliáš, P., Stoklas, R., Blaho, M., Pohorelec, O., Haščík, Š., Kučera, M., and Kúdela, R.: GaAs nanomembranes in the high electron mobility transistor technology, Materials 14 (2021) 3461.

1. Tian, W.W.: J. Phys.-Cond. Matt. 36 (2024) 345003.

Kuzmík, J., Adikimenakis, A., Ťapajna, M., Gregušová, D., Haščík, Š., Dobročka, E., Tsagaraki, K., Stoklas, R., and Georgakilas, A.: InN: breaking the limits of solid-state electronics, AIP Adv. 11 (2021) 125325.

1. Damas, G.B.: J. Chem. Phys. 158 (2023) 174313.
2. Loo, C.C.: Mater. Character. 205 (2023) 113279.
3. Enayati, H.: Crystals 14 (2024) 105.

Stoklas, R., Chvála, A., Šichman, P., Hasenöhrl, S., Haščík, Š., Priesol, J., Šatka, A., and Kuzmík, J.: Analysis and modeling of vertical current conduction and breakdown mechanisms in semi-insulating GaN grown on GaN: role of deep levels, IEEE Trans. Electron Dev. 68 (2021) 2365.

1. Kim, H.: J. Electron. Mater. 50 (2021) 6688.
2. Qin, Y.: J. Phys. D 56 (2023) 093001.
3. Liu, B.: Inter. J. Numeric. Modell.-Electron. Networks Dev. Fields 37 (2024) Iss. 2.

Huran, J., Hotový, I., Haščík, Š., Kobzev, A.P., and Balalykin, N.I.: Investigation of radiation damage in n doped a-SiC:H films annealed by pulsed electron beam, Vacuum 58 (2000) 428-433.

1. Valencia-Grisales, D.F.: J. Phys. D 56 (2023) 395105.

Šichman, P., Hasenöhrl, S., Stoklas, R., Priesol, J., Dobročka, E., Haščík, Š., Gucmann, F., Vincze, A., Chvála, A., Marek, J., Šatka, A., and Kuzmík, J.: Semi-insulating GaN for vertical structures: role of substrate selection and growth pressure, Mater. Sci Semicond. Process. 118 (2020) 105203.

1. Mochizuki, K.: Japan. J. Applied Phys. 60 (2021) 018002.
2. Pan, Y.: Inter. J. Energy Res. 45 (2021) 15512.
3. Qin, Y.: J. Phys. D 56 (2023) 093001.
4. Woo, K.: J. Phys.-Mater. 7 (2024) 022003.

Pohorelec, O., Ťapajna, M., Gregušová, D., Gucmann, F., Hasenöhrl, S., Haščík, Š., Stoklas, R., Seifertová, A., Pécz, B., Tóth, L., and Kuzmík, J.: Investigation of interfaces and threshold voltage instabilities in normally-off MOS-gated InGaN/AlGaN/GaN HEMTs, Applied Surface Sci 528 (2020) 146824.

1. Tian, Y.: Inter. J. Electrochem. Sci 15 (2020) 12682.

Gregušová, D., Tóth, L., Pohorelec, O., Hasenöhrl, S., Haščík, Š., Cora, I., Fogarassy, Z., Stoklas, R., Seifertová, A., Blaho, M., Laurenčíková, A., Oyobiki, T., Pécz, B., Hashizume, T., and Kuzmík, J.: InGaN/(GaN)/AlGaN/GaN normally-off metal-oxide-semiconductor high-electron mobility transistors with etched access region, Japan. J. Applied Phys. 58 (2019) SCCCD21.

1. Biswas, D.: Mater. Sci Semicond. Process. 135 (2021) 106109.

Blaho, M., Gregušová, D., Haščík, Š., Kuzmík, J., Chvála, A., Marek, J., and Šatka, A.: Technology and performance of E/D-mode InAlN/GaN HEMTs for mixed-signal electronics. In 22nd Inter. Microwave Radar Conf. (MIKON). Poznan: Warsaw Univ. Technol. 2018, p. 440-441. ISBN 978-83-949421-1-3.

#       1. Saglam, B.: IEEE Energy Conv. Congress & Exposition – ECCE 2022, pp. 1-6.

Gucmann, F., Ťapajna, M., Pohorelec, O., Haščík, Š., Hušeková, K., and Kuzmík, J.: Creation of two-dimesional electron gas and role of surface donors in III-N metal-oxide-semiconductor high-electron mobility transistors, Phys. Status Solidi A  215 (2018) 1800090.

1. Song, K.: J. Phys. D 53 (2020) 345107.
2. Shi, Y.: IEEE Trans. Electron Dev. 67 (2020) 2290.
3. Duong D.N.: J. Applied Phys. 127 (2020) 094501.
4. Kaushik, P.K.: Nanoscale Res. Lett. 16 (2021) 159.

Stoklas, R., Gregušová, D., Hasenöhrl, S., Brytavskyi, I.V., Ťapajna, M., Fröhlich, K., Haščík, Š., Gregor, M., and Kuzmík, J.: Characterization of interface states in AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors with HfO2 gate dielectric grown by atomic layer deposition, Applied Surface Sci 461 (2018) 255-259.

1. Ber, E.: IEEE Trans. Electron Dev. 66 (2019) 2100.
2. Zhang, X.-Y.: Nanoscale Res. Lett. 14 (2019) 83.
3. Liu, M.: Chinese Phys. B 29 (‏ 127101(2020.
4. Akkaya, A.: Mater. Today-Proc. 46 (2021) 6939.
5. Mohanty, S.: Applied Phys. Lett. 119 (2021) 042901.
6. Cheng, W.C.: J. Vacuum Sci Technol. B 40 (2022) 022212.
7. Shen, C.X.: Adv. Sci 9 (2022) 2104599.
8. Zhu, X.F.: J. Europ. Ceram. Soc 43 (2023) 4349.
9. Wu, N.T.: Semicond. Sci Technol. 38 (2023) 063002.
10. Wang, B.X.: J. Vacuum Sci Technol. A 42 (2024) 012401.
11. Long, P.X.: Nanotechnol. 35 (2024) 025204.
12. Lee, G.: Electronics 13 (2024) 2783.

Graff, A., Simon-Najasek, M., Altmann, F., Kuzmík, J., Gregušová, D., Haščík, Š., Jung, J., Baur, T., Grunenputt, J., and Blanck, H.: High resolution physical analysis of ohmic contact formation at GaN-HEMT devices, Microelectr. Reliab. 76-77 (2017)  338.

1. Zeng, F.: Electronics 7 (2018) 377.
2. Rackauskas, B.: IEEE Electron Device Lett. 39 (2018) 1580.
3. Hou, M.: Chinese Phys. B 28 (2019) 037302.
4. Zhang, X.: 20th Inter. Conf. Electronic Packaging Technol. – ICEPT 2019.
5. Wang, X.: J. Vacuum Sci Technol. B‏ 38 (2020) 062206.
6. Zhang, Z.J.: Adv. Electron. Mater. 8 (2022) 2101401.
7. Günes, B.: J. Phys. D 57 (2024) 405305.

Kuzmík, J., Fleury, C., Adikimenakis, A., Gregušová, D., Ťapajna, M., Dobročka, E., Haščík, Š., Kučera, M., Kúdela, R., Androulidaki, M., Pogany, D., and Georgakilas, A.: Current conduction mechanism and electrical break-down in InN grown on GaN, Applied Phys. Lett. 110 (2017) 232103.

1. Shen, L.: Applied Surface Sci 476 (2019) 418.

Ťapajna, M., Stoklas, R., Gregušová, D., Gucmann, F., Hušeková, K., Haščík, Š., Fröhlich, K., Toth, L., Pecz, B., Micusik, M., Brunner, F., and Kuzmík, J.: Investigation of ‘surface donors’ in Al2O3/AlGaN/GaN metal-oxide-semiconductor heterostructures: Correlation of electrical, structural, and chemical properties, Applied Surface Sci 426 (2017) 656-661.

1. Huang, H.: J. Phys. D 51(2018) 345102.
2. Jo, Y.J.: Electron. Mater. Lett. 15 (2019) 179.
3. Shi, Y.: IEEE Trans. Electron Dev. 66 (2019) 4164.
4. He, F.: Chinese J. Catal. 41 (2020) SI9.
5. Shi, Y.: IEEE Trans. Electron Dev. 67 (2019) 2290.
6. Asubar, J.T.: IEEE Electron Dev. Lett. 41 (2020) ‏ 693.
7. Cai, Y.: Japan. J. Applied Phys. 59 (2020) 041001.
8. Low, R.S.: Applied Phys. Express 14 (2021) 031004.
9. Dashtian, K.: Coord. Chem. Rev. 445 (2021) 214097.
10. Vauche, L.: ACS Applied Electron. Mater. 3 (2021) 1170.
11. Kaushik, P.K.: Nanoscale Res. Lett. 16 (2021)159.
12. Kaplar, R.: Ultrawide Bandgap Semicond. 107 (2021) 191.
13. Ahbab, S.S.: Proc. IEEE Inter. Women in Engn. (WIE) Conf. Electr. Computer Engn., WIECON-ECE 2021. IEEE 2022, p. 59.
14. Gong, J.R.: Japan. J. Applied Phys. 61 (2022) 011003.
15. Lin, Y.S.: Sci Adv. Mater. 4 (2022) 1419.
16. Nautiyal, P.: Microelectron. Reliab. 139 (2022) 114800.
17. Brivio, F.: Applied Phys. Lett. 123 (2023) 022104.
#     18. Fernandes Paes Pinto Rocha, P.: Power Electronic Devices and Components 4 (2023) 100033.
19. Gong, J.R.: J. Applied Phys. 135 (2024) 115303.

Ťapajna, M., Válik, L., Gucmann, F., Gregušová, D., Fröhlich, K., Haščík, Š., Dobročka, E., Tóth, L., Pécz, B., and Kuzmík, J.: Low-temperature atomic layer deposition-grown Al2O3 gate dielectric for GaN/AlGaN/GaN MOS HEMTs: Impact of deposition conditions on interface state density, J. Vacuum Sci Technol. B 35 (2017) 01A107.

1. Meer, M.: Semicond. Sci Technol. 32 (2017) 04LT02.
2. Duan, T. L.: Nanoscale Res. Lett. 12 (2017) 499.
3. Gao, J.: Physica Status Solidi A 215 (2018) 1700498.
4. Le, S.P.: J. Applied Phys. 123(2018) 034504.
5. Takhar, K.: Applied Surface Sci 481 (2019) 219.
6. Nguyen, D.D.: J. Applied Phys. 127 (2020) 094501.
7. Schiliro, E.: AIP Adv. 10 (2020) 125017.
8. Nguyen, D.D.: J. Applied Phys. 130 (2021) 014503.
9. Bhardwaj, N.: Applied Surface Sci 572 (2022) 151332.
10. Fiorenza, P.: Applied Surface Sci 579 (2022) 152136.
11. Schiliro, E.: ACS Applied Electr. Mater. 4 (2022) 406.
12. Lo Nigro, R.: Materials 15 (2022) 830.
13. Calzolaro, A.: Materials 15 (2022) 791.
14. Meer, M.: Semicond. Sci Technol. 37 (2022) 085007.
15. Paul, P.: ACS Applied Mater. Interfaces 15 (2023) 22626.
16. Chang, C.Y.: Chem. Mater. 35 (2023) 7430.
17. Deng, Y.C.: J. Applied Phys. 135 (2024) 084504.
18. Zhang, K.: Physica Status Solidi A 221 (2024) Iss. 12.
19. Lidsky, D.: Applied Phys. Lett. 124 (2024) 233503.

Gregušová, D., Blaho, M., Haščík, Š., Šichman, P., Laurenčíková, A., Seifertová, A., Dérer, J., Brunner, F., Wurfl, J., and Kuzmík, J.: Polarization-engineered n+GaN/InGaN/AlGaN/GaN normally-off MOS HEMTs, Physica Status Solidi a 214 (2017) 1700407.

1. Tokuda, H.: Japan. J. Applied Phys. 59 (2020) 084002.
2. Tapajna, M.: Crystals 10 (2020) 1153.
3. Biswas, D.: Mater. Sci Semicond. Process. 135 (2021) 106109.
4. Li, J.L.: Superlatt. Microst. 161 (2022) 107064.

Blaho, M., Gregušová, D.,  Haščík, Š., Ťapajna, M., Fröhlich, K., Šatka, A., and Kuzmík, J.: Annealing, temperature, and bias-induced threshold voltage instabilities in integrated E/D-mode InAlN/GaN MOS HEMTs, Applied Phys. Lett. 111 (2017) 033506.

1. Lee, C.-T.: AIP Adv. 4(2018) 045014.
2. Cui, P.: Sci Rep. 8 (2018) 9036.
3. Yahyazadeh, R.: J. Non-Oxide Glass. 11 (2019) 19.
4. Zhu, Q.: Chinese Phys. B 29 (2020) 047304.
5. Zhang, H.: Micro Nanostruct. 178 (2023) 207579.

Blaho, M., Gregušová, D., Haščík, Š., Seifertová, A., Ťapajna, M., Šoltýs, J., Šatka, A., Nagy, L., Chvála, A., Marek, J., Carlin, J.-F., Grandjean, N., Konstantinidis, G., and Kuzmík, J.: Technology of integrated self-aligned E/Dmode n++GaN/InAlN/AlN/GaN MOS HEMTs for mixed-signal electronics, Semicond. Sci Technol. 31 (2016) 065011.

1. Kumar, S.: IEEE Calcutta Conf. – CALCON 2020, pp.‏ 378.
2. Hofstetter, D.: Crystals 11 (2021) 1431.
#     3. Lee, D.: ACS Applied Nano Mater. 5 (2022) 18462.

Ťapajna, M., Hušeková, K., Pohorelec, O., Válik, L., Haščík, Š., Gucmann, F., Fröhlich, K., Gregušová, D., and Kuzmík, J.: Effect of HCl pretreatment on the oxide/semiconductor  interface state density in AlGaN/GaN MOS-HEMT structures with MOCVD grown Al2O3 gate dielectric. In: ASDAM 2016. Eds. Š. Haščík et al. IEEE 2016. ISBN 978-1-5090-3081-1. P. 207-211.

1. Saha, C.N.: Applied Phys. Lett. 125 (2024) 062101.

Ťapajna, M., Stoklas, R., Gregušová, D., Válik, L., Gucmann, F., Hušeková, K., Haščík, Š., Fröhlich, K., Toth, L., Pecz, B., Micusik, M., Brunner, F., Hashizume, T., and Kuzmík, J.: On the origin of surface donors in AlGaN/GaN metal-oxide semiconductor heterostructures with Al2O3 gate dielectric—correlation of electrical, structural, and chemical properties. In: Inter. Workshop on Nitride Semicond. (IWN 2016) Orlando 2016.

1. Akazawa, M.: Phys. Status Solidi B 254 (2017) 1600691.

Gucmann, F., Gregušová, D., Válik, L., Ťapajna, M., Haščík, Š., Hušeková, K., Fröhlich, K., Pohorelec, O., and Kuzmík, J.: DC and pulsed IV characterisation of AlGaN/GaN MOS-HEMT with Al2O3 gate dielectric prepared by various techniques. In: ASDAM 2016. Eds. Š. Haščík et al. IEEE 2016. ISBN 978-1-5090-3081-1. P. 9-12.

1. Hasan, Md. R.: J. Vacuum Sci Technol. B 35 (2017) 052202.
2. Pan, T.: Materiali in Tehnologije 52 (2018) 795.

Rýger, I., Vanko, G., Lalinský, T., Haščík, Š., Benčurová, A., Nemec, P., Andok, R., and Tomáška, M.: GaN/SiC based surface acoustic wave structures for hydrogen sensors with enhanced sensitivity, Sensors Actuators A 227 (2015) 55-62.

1. Drmosh, Q.A.: Ceramics Inter. 42 (2016) 12378.
2. Ayesh, A.I.: J. Alloys Compounds 689 (2016) 1.
3. Yun, D.-J.: IEEE Trans. Electron Devices 64 (2017) SI2350.
4. Wang, W.: IEEE Inter. Ultrasonics Symp. 2018.
5. Wang, W.: Sensors Actuators B 287 (2019) 157.
6. Mokhov, D.V.: Semiconductors 53 (2019) 1717.
7. Jaafar, M. M.: Applied Phys. A 125 (2019) 804.
8. Upadhyay, K.T.: Mater. Sci Engn. B 263 (2021) 114849.
9. Ghosh, S.: IEEE Trans. Electron Dev. 68 (2021) 4637.
10. Ghosh, S.: IEEE Trans.Nanotechnol. 20 (2021) 303.
11. Ghosh, S.: IEEE Trans. Nanotechnol. 21 (2022) 655.
12. Zhang, J.X.: Nanotechnol. 34 (2023) 155501.
13. Ghosh, S.: IEEE INDICON 2022.
14. Salimian, A.: Inter. J. Hydrogen Energy 50 (2024) 1157.
15. Liu, H.Y.: Nanomater. 14 (2024) 187.
16. Cui, B.L.: Sensors Actuators Rep. 7 (2024) 100197.
17. Li, ZR.: Sensors Actuators B 417 (2024) 136172.

Kuzmík, J., Haščík, Š., Kučera, M., Kúdela, M., Dobročka, E., Adikimenakis, A., Mičušík, M., Gregor, M., Plecenik, A., and Georgakilas, A.: Elimination of surface band bending on N-polar InN with thin GaN capping, Applied Phys. Lett. 107 (2015) 191605.

1. Lund, C.: J. Applied Phys. 123 (2018) 055702.
2. Pfusterschmied, G.: Proc. IEEE Micro Electro Mechan. Systems 2019, pp. 735-738.
3. Park, B.-G.: Nanotechnol.‏ 31 (2020) 335503.

Blaho, M., Gregušová, D., Haščík, Š., Jurkovič, M., Ťapajna, M., Fröhlich, K., Dérer, J., Carlin, J., Grandjean, N., Kuzmík, J., : Self-aligned normally-off metal-oxide-semiconductor n+++GaN/InAlN/GaN high-electron mobility transistors. Phys. Status Solidi A 112 (2015) 1086-1090.

1. Yeh, P.-C.: Applied Phys. Express 8 (2015) 084101.
2. Dutta, G.: IEEE Trans. Electron Dev. 63 (2016) 1450.
3. Freedsman, J.: IEEE Electron Device Lett. 38 (2017) 497.
4. Le, S.P.: J. Applied Phys. 123(2018) 034504.
5. Sato, T.: Applied Phys. Lett. 113 (2018) 063505.
6. Meneghini, M.: Mater. Sci Semicond. Process. 78 (2018) 118.
7. Nguyen, D.D.: J. Applied Phys. 127 (2020) 094501.
8. Nguyen, D.D.: J. Applied Phys. 130 (2021) 014503.
9. Zhang, W.H.: Results in Phys. 24 (2021) 104209.
10. Lee, D.: ACS Applied Nano Mater. 5 (2022) 18462.
11. Hsieh, H.J.: Mater. Sci Semicond. Process. 169 (2024) 107908.

Hotový, I., Kostič, I., Haščík, Š., Řeháček, V., Predanocy, M., and Bencurova, A.: Patterning of titanium oxide surfaces using inductively coupled plasma for gas sensing, Applied Surface Sci 312 (2014) 107-111.

1. Hammann, C.P.W.: Microelectr. Engn. 195 (2018) 13.

Gregušová, D., Jurkovič, M., Haščík, Š., Blaho, M., Seifertová, A., Fedor, J., Ťapajna, M., Fröhlich, K., Vogrinčič, P., Liday, J., Derluyn, J., Germain, M., Kuzmík, J., : Adjustment of threshold voltage in AlN/AlGaN/GaN high-electron mobility transistors by plasma oxidation and Al2O3 atomic layer deposition overgrowth. Applied Phys. Lett. 104 (2014) 013506.

1. Nagy, L.: IEEE Proc. 6828415 RADIOELEKTRONIKA 2014. ISBN: 978-1-4799-3714-1.
2. Hahn, H.: IEEE Trans. Electron Dev. 62 (2015) 538.
3. Hahn, H.: J. Applied Phys. 117 (2015) 214503.
4. Qin, X.: Applied Phys. Lett. 107 (2015) 081608.
5. Luekens, G.: J. Applied Phys. 119 (2016) 205705.
6. Dutta, G.: IEEE Trans. Electron Dev. 63 (2016) 1450.
7. Zhang, K.: IEEE SSLChina – IFWS 2016. P. 64.
8. Zhang, K.: Applied Phys. Express 10 (2017) 024101.
9. Duan, T. L.: Nanoscale Res. Lett. 12 (2017) 499.
10. Zhou, X. J.: Superlatt. Microstr. 112 (2017) 1.
#    12. Zhang, K.: Inter. Forum on Wide Bandgap Semiconductors China, IFWS 2016. Conf. Proc. (2017) 7803758, pp. 64-67.
#     13. Singh, P.: Comm. Computer Inf. Sci 892 (2019) 380.
14. Supardan, S. N.: J. Phys. D 53(2020) 075303.
15. Liu, Y.: Sci Rep. 11 (2021) 22431.
16. Liu, S.Y.: IEEE Electron Device Lett. 43 (2022) 1621.

Hotový, I., Haščík, Š., Gregor, M., Řeháček, V., Predanocy, M., and Plecenik, A.: Dry etching characteristics of TiO2 thin films using inductively coupled plasma for gas sensing, Vacuum 107 (2014) 20-22.

1. Lepcha, A.: J. Phys. Chem. C 119 (2015) 18835.
2. Akin, N.: J. Mater. Sci-Mater. Electron. 28 (2017) SI7376.
3. Ban, W.: Sci Adv. Mater. 10 (2018) 923.
4. Choi, J.S.: ECS J. Solid State Sci Technol. 7 (2018) P339.
5. Alias, N.N.: J. Phys.: Conf. Ser. 1082 (2018) 012051.
6. Guo, F.: Vacuum 165  (2019) 223.
7. Thapaliya, B.P.: CHEMSUSCHEM 12 (2019) 1316.
8. Tariq, F.: Vacuum 171 (2020) UNSP 108999.
9. Park, Y.: Nanophoton. 9 (2020) SI1023.
10. Hegeman, I.: Proc. SPIE 11283 (2020) 112830C.
11. Piechulla, P.M.: Adv. Optic. Mater. 9 (2021) 2100186.
12. Yin, T.: Ceram. Inter. 47 (2021) 28642.
13. Cho, Y.N.: Applied Surface Sci 600 (2022) 154010.
14. Wu, X.: Micromach. 14 (2023) 1193.
15. Rahman, M.W.: Proc. SPIE 12956 (2024) 129560M.

Ťapajna, M., Jurkovič, M., Válik, L., Haščík, Š., Gregušová, D., Brunner, F., Cho, E., Hashizume, T., and Kuzmík, J.: Impact of GaN cap on charges in Al2O3/(GaN/)AlGaN/GaN metal-oxide-semiconductor heterostructures analyzed by means of capacitance measurements and simulations, J. Applied Phys. 116 (2014) 104501.

1. Zhu, J.-J.: IEEE Trans. Electron Dev. 62 (2015) 512.
2. Qin, X.: J. Mater. Sci-Mater. Electron. 26 (2015) SI4638.
3. He, Y.: Applied Phys. Lett. 107 (2015) 063501.
4. Qin, X.: Applied Phys. Lett. 107 (2015) 081608.
5. Liu, X.: J. Applied Phys. 119 (2016) 015303.
6. Zhu, J.-J.: Japan. J. Applied Phys. 55 (2016) SI05FH01.
7. Dutta, G.: IEEE Trans. Electron Dev. 63 (2016) 1450.
8. Zhou, Q.: Semicond. Sci Technol. 31 (2016) 035005.
9. Son, P.L.: J. Applied Phys. 119 (2016) 204503.
10. Winzer, A.: Phys. Status Solidi A 213 (2016) 1246.
11. Colon, A.: J. Vacuum Sci Technol. A 34 (2016) 06K901.
12. Colon, A.: J. Vacuum Sci Technol. A 35 (2017) 01B132.
13. Panda, D.K.: AEU-Inter. J. Electron. Comm. 82 (2017) 467.
14. Zhu, J.-J.: Mater. Res. Express 4 (2017) 025902 .
15. Kim, T.-S.: J. Phys. D 50 (2017) 39LT03.
16. Le, S.P.: J. Applied Phys. 123(2018) 034504.
17. Upadhyay, B.B.: Solid-State Electr. 141 (2018) 1.
18. Kim, Tae-S.: J. Korean Phys. Soc. 72 (2018)1332.
19. Verma, S.: Superlatt. Microstr. 119 (2018) 181.
20. Anvari, R.: Applied Surface Sci 452 (2018) 75.
21. Anvari, R.: Sensors Actuators B 269 (2018) 62.
22. Sato, T.: Applied Phys. Lett. 113 (2018) 063505.
23. Zhu, J.: IEEE Inter. Reliab. Phys. Symp. Proc. 2018. PWB.11-PWB.14.
24. Acurio, E.: IEEE Trans. Electron Dev. 66 (2019) 883.
25. Miyamoto, H.: Japan. J. Applied Phys. 59 (2020) 044002.
26. Cai, Y.: Japan. J. Applied Phys. 59 (2020) 041001.
27. Nguyen, D.D.: J. Applied Phys. 127 (2020) 094501.
28. Bordoloi, S.: IEEE Access 9 ((2021) 99828.
29. Song, Y.L.: Micromachines 12 (2021) 751.
30. Nguyen, D.D.: J. Applied Phys. 130 (2021) 014503.
31. Jin, E.N.: Materials 9 (2021) 111101.
32. Raja, P.V.: Electronics 10 (2021) 3096.
33. Sun, N.: IEEE Trans. Electron Dev. 69 (2022) 82.
34. Calzolaro, A.: Materials 15 (2022) 791.
35. Cong, Z.Z.: Applied Phys. Lett. 123 (2023) 212104.
36. Deng, Y.C.: J. Applied Phys. 135 (2024) 084504.
37. Zhang, K.: Phys. Status Solidi A 221 (2024) Iss. 12.
38. Chakrabarty, A.: Physica Scripta 99 (2024) 075020.
39. Bito, K.: Japan. J. Applied Phys. 63 (2024) 080905.‏

Rýger, I., Vanko, G., Lalinský, T., Haščík, Š., Nemec, P., Benčurová, A., Tomáška, M., : The GaN/SiC heterostructure-based hydrogen SAW sensor operating in GHz range. Procedia Engn. 87 (2014) 260-263.

*       1. Paszkiewicz, R.: Proc. ADEPT. Žilina: Univ. Žilina 2017. ISBN 978-80-554-1342-6. P. 64.
2. Upadhyay, K.T.: Mater. Sci Engn. B 263 (2021) 114849.
3. Feng, Y.: IET Circuits Dev. Systems 16 (2022) 483.
4. Kim, S.: Adv. Mater. Technol. 7 (2022) 2200180.

Ťapajna, M., Jurkovič, M., Válik, L., Haščík, Š., Gregušová, D., Brunner, F., Cho, E., and Kuzmík, J.: Bulk and interface trapping in the gate dielectric of GaN based metal–oxide–semiconductor high-electron mobility transistors, Applied Phys. Lett. 102 (2013) 243509.

1. Hori, Y.: J. Applied Phys.114 (2013) 244503.
2. Liao, W. C.: Applied Phys. Lett. 104 (2014) 033503.
3. Zhang, K.: Semicond. Sci Technol. 29 (2014) 075019.
4. Ye, D.: J. Phys. D 47 (2014) 255101.
5. Meneghesso, G.: IEEE Inter. Reliab. Phys. Symp. 2014.
6. Bakeroot, B.: J. Applied Phys. 116 (2014) 134506.
7. Yatabe, Z.: Japan. J. Applied Phys. 53 (2014) 100213.
8. Wu, T.-L.: Solid-State Electron. 103 (2015) 127.
9. Wang, Y.-H.: Applied Phys. Lett. 108 (2016) 233507.
10. Zhu, J.-J.: Japan. J. Applied Phys. 55 (2016) SI05FH01.
11. Wang, Y.-H.: Semicond. Sci Technol. 31 (2016) 025004.
12. Colon, A.: J. Vacuum Sci Technol. B 34 (2016) 06K901.
13. Yatabe, Z.: J. Phys. D 49 (2016) 393001.
14. Curatola, G.: Power Electron. Power Systems (2017) 165.
15. Zhou, W.: ASME, Proc. 25th Inter. Conf. Nuclear Engn. 2017, Vol. 9, Art. No.
009T15A036-1.
16. Panda, D. K.: AEU-Inter. J. Electron.Comm. 82 (2017) 467.
17. Nishiguchi, K.: Japan. J. Applied Phys. 56 (2017) 101001.
18. Hua, M.: IEEE Electron Device Lett. 39 (2018) 413.
19. Le, S.P.: J. Applied Phys. 123(2018) 034504.
20. Wang, H.: Japan. J. Applied Phys. 57 (2018) SI 04FG05.
21. Hua, M.: Physica Status Solidi A 215 (2018) SI 1700641.
22. Hwang, Il-H.: Physica Status Solidi A 215 (2018) 1700650.
23. He, J.: IEEE Trans. Electron Dev. 65 (2018) 3185.
#   24. He, J.: CS MANTECH 2018.
25. Ber, E.: IEEE Trans. Electron Dev. 66 (2019) 2100.
26. Wang, Z.: Nanoscale Res. Lett. 14 (2019) 128.
27. Khadar, R.A.: IEEE Electron Dev. Lett. 40 (2019) 443.
28. Huang, S.: J. Applied Phys. 126 (2019) 164505.
29. Hua, M.: Proc. Inter. Conf. ASIC 2019, pp.8983535.
#    30. Bao, S.: Chinese Physics B 28 (2019) 067304.
31. Liu, W.: Applied Phys. Lett. 116 (2020) 022104.
32. Elangovan, S.: Energies 13 (2020) 2628.
33. Krukovskyi, R.: Functional Mater.‏ 27 (2020) 482.
34. Bordoloi, S.: IEEE Access 9 ((2021) 99828.
35. Khadar, R.A.: Applied Phys. Express 14 (2021) 046503.
36. Ma, Q.: Electron. Lett. 57 (2021) 591.
37. Gupta, S.D.: J. Applied Phys. 130 (2021) 015701.
38. Lin, Y.S.: Semicond. Sci Technol. 37 (2022) 025017.
39. Meneghini, M.: J. Applied Phys. 130 (2021) 181101.
40. Calzolaro, A.: Materials 15 (2022) 791.
41. Yin, X.B.: Semicond. Sci Technol. 37 (2022) 065008.
42. Pan, S.J.: IEEE Trans. Electron Dev. 69 (2022) 4877.
#    43. Khan, A.B.: In Electrical and Electronic Devices, Circuits, and Materials: Technological Challenges and Solutions. ISBN 978-111975510-4. Wiley 2021, p. 83.
44. Liu, X.Y.: IEEE Electron Dev. Lett. 43 (2022) 1408.
45. Chen, Y.L.: Sci China-Inf. Sci 66 (2023) 122401.
46. Zhang, H.: Micro Nanostruct. 178 (2023) 207579.
47. Mansurov, V.: Applied Surface Sci 640 (2023) 158313.
48. Hattori, S.: J. Applied Phys. 135 (2024) 175303.
49. Bito, K.: Japan. J. Applied Phys. 63 (2024) 080905.

Pudiš, D., Šušlik, Ľ., Škriniarová, J., Kováč, J., Kováč, J., Kubicová, I., Martinček, I., Haščík, Š., and Schaaf, P.:Effect of 2D photonic structure patterned in the LED surface on emission properties, Applied Surface Sci 267 (2013) 161-165.

1. Patra, S.K.: Applied Optics 53 (2014) 3890.
2. Huang, K.: Optics Laser Technol. 72 (2015) 134.
3. Yang, Y.: Microelectr. Engn. 139 (2015) 39.
4. Sattarian, H.: Chinese Phys. B 25 (2016) 058504.
5. Ding, X.: IEEE Trans. Electron Dev. 64 (2017) 182.
6. Dalmis, R.: Applied Surface Sci 475 (2019) 94.
7. Cong, Z.: Applied Surface Sci 503 (2020) UNSP 144159.
8. Lee, J.-R.: Inter. J. Precision Engn. Manufact.-Green Technol.‏ 7 (2020) 1047.
9. Tang, X.: Optics Express 29 (2021) 5993.
10. Wang, K.L.: J. American Ceram. Soc 106 (2023) 7146.

Blaho, M., Gregušová, D., Jurkovič, M., Haščík, Š., Fedor, J., Kordoš, P., Fröhlich, K., Brunner, F., Cho, E., Hilt, O., Würfl, H., Kuzmík, J., : Ni/Au-Al2O3 gate stack prepared by low-temperature ALD and lift-off for MOSHEMTs. Microelectr. Engn. 112 (2013) 204-207.

1. Moon, S.-W.: Japan. J. Applied Phys. 53 (2014) 08NH02.
2. Zhang, Z.: Electron. Lett. 51 (2015) 1201.
3. Zhang, Z.: IEEE Trans. Electron Dev. 63 (2016) 731.
4. Wang, Y.-P.: J. Mater. Chem. C 4 (2016) 11059.
5. Fisichella, G.: Beilstein J. Nanotechnol. 8 (2017) 467.
6. Lin, Y.S.: Micromachines 14 (2023) 1183.
7. Ye, Y.K.: J. Phys. D 57 (2024) 345101.

Jurkovič, M., Gregušová, D., Palankovski, V., Haščík, Š., Blaho, M., Čičo, K., Fröhlich, K., Carlin, J., Grandjean, N., and Kuzmík, J.: Schottky-barrier normally off GaN/InAlN/AlN/GaN HEMT with selectively etched access region,. IEEE Electron Dev. Lett. 34 (2013) 432-434.

1. Ahmadi, E.: Applied Phys. Lett. 104 (2014) 072107.
#       2. Marek, J.: ASDAM 2014. P. 153.
3. Dimitrijev, S.: MRS Bull. 40 (2015) 399.
4. Lee, K.B.: Applied Phys. Express 8 (2015) 036502.
5. Jebalin, B.K.: Superlatt. Microstr. 78 (2015) 210.
6. Chiu, H.-C.: Microelectron. Reliab. 55 (2015) 48.
7. Huang, H.: Solid-State Electr. 114 (2015) 148.
8. Zaidi, Z. H.: Semicond. Sci Technol. 30 (2015) 105007.
9. Nagy, L.: Inter. Conf. Applied Electron. 2015. 7011707, p. 225.
10. Lee, G.-Y.: Applied Phys. Express 8 (2015) 064102.
#      11. Nagy, L.: IEEE 18th DDECS 2015. 7195673, p. 83.
12. Smith, M. D.: Semicond. Sci Technol. 31 (2016) 025008.
13. Chen, P.-G.: Solid-State Electr. 129 (2017) 206.
14. Jena, K.: Region 10 Annual Inter. Conf. TENCON. IEEE 2017. Art.no. 7848652, p. 3253.
15. Freedsman, J.J.: IEEE Electron Device Lett. 38 (2017) 497.
16. Chander, S.: IEEE ICIEEIMT 2017. P.293.
17. Tiwari, N.: IEMENTECH 2017.
#      18. Gupta, S.: SCOPES 2016. Proc. 2017. Art.no. 7955748, pp. 1777.
19. Wei, L.-C.: J. Nanosci Nanotechnol. 18 (2018) 7400.
20. Chen, P.-G.: Sensors 18 (2018) 2795.
21. Smith, M.D.: Applied Surface Sci 521 (2020) 146297.
22. Toprak, A.: Mater. Res. Express 8 (2021) 126302.
#      23. Jiang Y.: Proc. Inter. Conf. ASIC 2021.
24. Sarkar, S.: Microelectr. Engn. 258 (2022) 111756.
25. Singh, J.: Silicon 14 (2022) 6311.
26. Nie, Z.R.: Micromachines 15 (2024) 571.

Jurkovič, M., Gregušová, D., Haščík, Š., Blaho, M., Molnár, M., Palankovski, V., Donoval, D., Carlin, J., Grandjean, N., Kuzmík, J., : GaN/InAlN/AlN/GaN normally-off HEMT with etched access region. In: WOCSDICE-EXMATEC 2012.Eds. Y. Cordier and J.-Y. Duboz. Island of Porquerolles: CRHEA & CNRS 2012.

     1. Mizutani, T.: J. Applied Phys. 113 (2013) 034502.

Huran, J., Valovič, A., Kobzev, A., Balalykin, N., Kučera, M., Haščík, Š., Malinovsky, L., and Kováčová, E.: Stuctural and physical characteristics of PECVD nanocrystalline silicon carbide thin films. Phys. Procedia 32 (2012) 303-307.

#   1. Wan, M.: Zhenkong Kexue yu Jishu Xuebao/J. Vacuum Sci Technol. 35 (2015) 424.
2. Nguyen, B.: Indust. Engn. Chem. Res. 62 (2023) 9474.

Jurkovič, M., Gregušová, D., Haščík, Š., Blaho, M., Čičo, K., Palankovski, V., Carlin, J., Grandjean, N., Kuzmík, J., : Polarization engineered normally-off GaN/InAlN/AlN/GaN HEMT In: Inter. Workshop on Nitride Semicond. 2012 – IWN. Sapporo 2012..

      1. Mizutani, T.: J. Applied Phys. 113 (2013) 034502.

Hotový, I., Kostič, I., Haščík, Š., Řeháček, V., Liday, J., Sitter, H., : Development and fabrication of TiO2 tip arrays for gas sensing, J. Electrical Engn. 62 (2011) 363-366.

1. Huang, Y.: Nanotechnol. 23 (2012) 485306.
2. Adzhri, R.: IEEE Regional Symp. Micro Nanoelectron. 2015. P. 196.
3. Takahashi, M.: Chem. Lett. 46 (2017) 1396.
4. Siuzdak, K.: Progress Solid State Chem. 62 (2021) 100297.

Lalinský, T., Vanko, G., Vincze, A., Haščík, Š., Osvald, J., Donoval, D., Tomáška, M., Kostič, I., : Effect of fluorine interface redistribution on performance of AlGaN/GaN HEMTs. Microelectr. Engn. 88 (2011) 166-169.

1. Ketteniss, N.: IEEE Electron Device Lett. 33 (2012) 519.
2. Bisi, D.: Europ. Solid-State Device Research Conf. 2013, p. 61.
3. Loghmany, A.: Solid-State Electron. 103 (2015) 162.
4. He, Y.: IEEE SSL China – IFWS 2016. P. 116.
*     5. Fornasiero, Q.: WOCSDICE EXMATEC 2021, p. 50.
6. Mauduit, C.: Microelectron. Engn. 277 (2023) 112020.

Lalinský, T., Vanko, G., Vallo, M., Držík, M., Bruncko, J., Jakovenko, J., Kutiš, V., Rýger, I., Haščík, Š., Husák, M., : Impact of ZnO gate interfacial layer on piezoelectric response of AlGaN/GaN C-HEMT based ring gate capacitor. Sensors Actuators A 172 (2011) 386-391.

      1. Wang C.: Chinese Phys. Lett. 31 (2014) 128501.

Pudiš, D., Šušlik, Ľ., Škriniarová, J., Kováč, J., Martinček, I., Kováč, J., Haščík, Š., Kubicová, I., Novák, J., Veselý, M., : Light extraction from a light emitting diode with photonic structure in the surface layer investigated by NSOM. Optics Laser Technol. 43 (2011) 917-921.

1. Kuzma, A.: Proc. SPIE 8697 (2012) 869720.
2. Yin, Z.: Optics Express 21 (2013) 28531.
3. Wang, J.: Applied Mechanics Mater. 333-335 (2013) 555.

Lalinský, T., Držík, M., Vanko, G., Vallo, M., Kutiš, V., Bruncko, J., Haščík, Š., Jakovenko, J., and Husák, M.:Piezoelectric response of AlGaN/GaN-based circular-HEMT structures. Microelectr. Engn. 88 (2011) 2424-2426.

1. Wang, C.: Microelectr. Engn. 109 (2013) 24.
2. Chapin, C.A.: Structural Health Monitoring 2013. P. 1621.
#        3. Senesky, D.G.: In Semiconductor-Based Sensors. World Sci Publ. 2016. ISBN 978-981314673-0. P. 395-433.
4. Tomita, S.: J. Applied Phys. 121 (2017) 235102.
5. Wang, A.: AIP Adv. 8 (2018) 035318.
6. Khan, A.B.: J. Nanoelectron. Optoel. 13 (2018) 20.
7. Luo, J.: J. Semicond.39 (2018) 124007.
8. Wang, A.: Semicond. Sci Technol. 34 (2019) 115022.
9. Sun, J.: Sensors Actuators A 314 (2020) 112217.
10. Kumari, V.: IETE Techn. Rev. 38 (2021) 294.

Lalinský, T., Rýger, I., Vanko, G., Tomáška, M., Kostič, I., Haščík, Š., Vallo, M., : AlGaN/GaN based SAW-HEMT structures for chemical gas sensors, Procedia Engn. 5 (2010) 152-155.

1. Guo, Y.: RSC Adv. 5 (2015) 98724.
#      2. Caliendo, C.: In Anti-Abrasive Nanocoatings: Current and Future Applications Woodhead Publ. in Mater. 2015. ISBN: 978-0-85709-211-3. P. 430.
3. Amoudache, S.: J. Applied Phys. 119 (2016) 114502.
4. Sharma, N.: J. Nanoelectr. Optoelectr. 11  (2016) 694.
5. Pennec, Y.: Advances in Applied Mechanics 52 (2019) 105.
*      6. Bhattacharjee, K.: US Patent No. 10211806 B2 (2019).
*       7. Bhattacharjee, K.: US Patent No. 10326426 B2 (2019).
*       8. Bhattacharjee, K.:  US Patent No. 10305442 B2 (2019).
*        9. Bhattacharjee, K.: US Patent No. 10305443 B2 (2019).
10. Sharma, N.: IEEE Trans. Electron Dev. 67 (2020) 289.
11. Kumar, N.: IEEE Trans. Nanotechnol. 19 (2020) 527.
12. Upadhyay, K.T.: Mater. Sci Engn. B 263 (2021) 114849.
13. Eisner, S.R.: IEEE Aerospace Conf. Proc. 2021.
14. Pal, P.:IEEE Sensors J. 21 (2021)  12998.
#      15. Sharma, N.: Lecture Notes in Networks and Syst. 204 (2021) 13.
*      16. Bhattacharjee, K.: Solidly mounted layer thin film device with grounding layer. US Patent No. 10938367 B2 (2021).
*      17. Yogendra, G.: In VLSI and hardware implementations using modern machine learning methods. CRC Press. ISBN 978-1-032-06171-9, 2021, pp. 163-178.
18. Sharma, N.: J. Mater. Chem. C 10 (2022) 12157.
#       19. Gupta, Y.: VLSI and Hardware Implementations using Modern Machine Learning Methods. CRC 2022, pp. 163-179. ISBN 978-100-320-103-8

Osvald, J., Lalinský, T., Vanko, G., Haščík, Š., and Vincze, A.: CV characterization of SF6 plasma treated AlGaN/GaN heterostructures, Microelectr. Engn. 87 (2010) 2208-2210.

1. Wang, R.: J. Phys. D 51 (2018) 065108.
2. Wang, R.: Phys. Rev. Applied 11 (2019) 054021.
3. Fornasiero, Q.: J. Vacuum Sci Technol. B 41 (2023) 012202.

Vanko, G., Lalinský, T., Haščík, Š., Rýger, I., Mozolová, Ž., Škriniarová, J., Tomáška, M., Kostič, I., Vincze, A., : Impact of SF6 plasma treatment on performance of AlGaN/GaN HEMT. Vacuum 84 (2009) 235-237.

1. Wang, Y.Z.: Applied Phys. Lett. 98 (2011) 043506.
2. Hirose, M.: Phys. Status Solidi C 9 (2012) 361.
3. Wang, Y.Z.: Applied Phys. Lett. 101 (2012) 063505.
4. Zhang, H.Y.: J. Phys. D 46 (2013) 435102.
5. Bisi, D.: Europ. Solid-State Dev. Research Conf. 2013, Art. no. 6818819, P. 61.
6. Lee, N.-H.: Japan. J. Applied Phys. 53 (2014) SI04EF10.
7. Du, Y.-D.: Chinese Phys. Lett. 31 (2014) 048501.
8. Tzou, A.-J.: Semicond. Sci Technol. 31 (2016) 055003.
9. Mao, L.-F.: ECS J. Solid State Sci Technol. 8 (2019) P472.
#  10. Han, J.: Faguang Xuebao/Chinese J. Lumin. 40 (2019) 915.
11. Chen, D.Y.: Semicond. Sci Technol. 37 (2022) 035011.
12. Cho, H.K.: IEEE Photon. Technol. Lett. 35 (2023) 915.

Pudiš, D., Škriniarová, J., Martinček, I., Kováč, J., Tarjányi, N., Haščík, Š., : Periodic structures patterned on metal and III-V compound surfaces using two-beam interference method, J. Electr. Engn. 60 (2009) 166-169.

1. Indrisiunas, S.: J. Micromech. Microengn. 23 (2013) 095034.
2. Cernecky, J.: J. Electr. Engn. 66 (2015) 53.
3. Levonyan, L.: Acta Crystall. A 79 (2023) 14.

Lalinský, T., Rýger, I., Rufer, L., Vanko, G., Haščík, Š., Mozolová, Ž., Škriniarová, J., Tomáška, M., Kostič, I., Vincze, A., : Surface acoustic wave excitation on SF6 plasma-treated AlGaN/GaN heterostructure. Vacuum 84 (2009) 231-234.

    1. Zhang, D.: Materials Research Bull. 46 (2011) 1582.

Lobotka, P., Lalinský, T., Španková, M., Vávra, I., Chromik, Š., Haščík, Š., Šmatko, V., Mozolová, Ž., Kováčová, E., Dérer, J., Gaži, Š., and Gierlowski, P.: Antenna-coupled uncooled THz microbolometer based on micromachined GaAs and LSMO thin film, IEEE Sensors (2008) 604-607.

1. Paul, N.: IEEE EDKCON 2018, p. 55.

Lalinský, T., Rufer, L., Vanko, G., Mir, S., Haščík, Š., Mozolová, Ž., Vincze, A., Uherek, F., : AlGaN/GaN heterostructure-based surface acoustic wave-structures for chemical sensors. Applied Surface Sci 255 (2008) 712-714.

1. Cho, E.: J. Vacuum Sci Technol. B 27 (2009) 2079.
2. Lee, C.M.: IEEE Sensors (2010) 2008.
3. Chen, T.Y.: IEEE Trans. Electron Dev. 58 (2011) 1541.
4. Zhang, D.: Materials Research Bull. 46 (2011) 1582.
5. Lu, X.: IEEE Sensors J. 13 (2013) 1245.
6. Yang, H.: Europ. Phys. J.-Applied Phys. 72 (2015) 20301.
7. Wang, H.: Applied Surface Sci 369 (2016) 414.
8. Chang, C.-H.: IEEE Trans. Electron Dev. 67 (2020) 296.
9. Horta, I.M.: Surfaces Interfaces 40 (2023) 103023.

Florovič, M., Kováč, J., Kordoš, P., Škriniarová, J., Lalinský, T., Haščík, Š., Michalka, M., Donoval, D., Uherek, F., : Electrical properties of ohmic contacts for Al0.3Ga0.7N/GaN semiconductor devices. In: ASDAM 2008. Eds. Š. Haščík and J.Osvald. Piscataway: IEEE 2008. ISBN: 978-1-4244-2325-5. P. 103-106.

         1. Macherzynski, W.: Adv. Electr. Electron. Engn. 14 (2016) 83.

Lalinský, T., Držík, M., Jakovenko, J., Vanko, G., Mozolová, Ž., Haščík, Š., Chlpík, J., Hotový, I., Řeháček, V., Kostič, I., Matay, L., and Husák, M.: GaAs based micromachined thermal converter for gas sensors, Sensors Actuators A 142 (2008) 147-152.

1. Zhang, B.Z.: Advanced Materials Res. 97-101 (2010) 4221.
#      2. Jia, X.: Chinese J. Sensors Actuators 23 (2010) 188.
#      3. Zhou, Z.: Yi Qi Yi Biao Xue Bao/Chinese J. Sci Instrum. 34 (2013) 2757.
#      4. Zhao, W.: Yi Qi Yi Biao Xue Bao/Chinese J. Sci Instrum. 37 (2016) 579.
5. Huang, C.-Y.:Sustainability 10 (2018) 3451.
6. Zhao, W.-J.: Sensors 19 (2019) Iss. 17.

Hotový, I., Řeháček, V., Mika, F., Lalinský, T., Haščík, Š., Vanko, G., and Držík, M.: Gallium arsenide suspended microheater for MEMS sensor arrays, Microsyst. Technol. 14 (2008) 629-635.

  1. Lee, J.: J. Microelectromech. Systems 17 (2008) 1513.
2. Biro, F.: IEEE THERMINIC. Berlin 2013. P. 116.
3. Biro, F.: Microelectron. J. 45 (2014) 1822.
4. Samaeifar, F.: Sensor Rev. 35 (2015) 116.
5. Samaeifar, F.: Experimen. Techniq. 40  (2016) 755.
6. Spruit, Ronald G.: J. Microelectromech. Systems 26 (2017) 1165.
7. van Omme, J.T.: Ultramicroscop. 192 (2018) 14.
8. Wang, C.-P.: Microelectron. Engn. 228 (2020) 111334.
9. Kalinin, I.A.: Sensors Actuators A 317 (2021) 112457.
10. Biro, F.: Microsystem Technol.-Micro-And Nanosystems-Inf. Storage Process. Systems 28 (2022) 2511.
11. Han, J.: J. Micromech. Microengn. 33 (2023) 075007.
12. Pleshakov, G.A.: Micromach. 14 (2023) 2023.
#     13. Zheng, S.H.: In-Situ Transmiss. Electron Microscopy. 2023, pp. 83-104.
14. Zhang, T.: Micromach. 15 (2024) 130.
15. Yaguchi, T.: Microscopy 73 (2024) 117.

Vanko, G., Lalinský, T., Tomáška, M., Haščík, Š., Mozolová, Ž., Škriniarová, J., Kostič, I., Vincze, A., Uherek, F., : Impact of SF6 plasma on DC and microwave performance of AlGaN/GaN HEMT structures. In: ASDAM 2008. Eds. Š. Haščík and J.Osvald. Piscataway: IEEE 2008. ISBN: 978-1-4244-2325-5. P. 335-338.

      1. Egorkin, V.: Proc. 2017 IEEE ELCONRUS. P. 1131.

Vanko, G., Lalinský, T., Mozolová, Ž., Liday, J., Vogrinčič, P., Vincze, A., Uherek, F., Haščík, Š.,  and Kostič, I.:Nb-Ti/Al/Ni/Au based ohmic contacts to AlGaN/GaN. Vacuum 82 (2008) 193-196.

1. Škriniarová, J.: ASDAM 2008. Piscataway: IEEE 2008. ISBN: 978-1-4244-2325-5. P. 319.
2. Tellez, H.: Anal. Bioanal. Chem. 397 (2010) 2865.
3. Wu, T.-T.: J. Lightwave Technol. 29 (2011) 3757.
4. Lin, Y.-S.: Semicond. Sci Technol. 28 (2013) SI074018.
5. Redondo-Cubero, A.: J. Phys. D 47 (2014) 185302.
6. Wang, N.-F.: Innovation, Comm. Engn. (2014) 301.
#   7. Stuchlíková, L.: ASDAM 2014. Art. no. 6998675, p. 181.
8. Jung, S.M.: Semicond. Sci Technol.  30 (2015) 075012.
9. Greco, G.: Applied Surface Sci 383 (2016) 324.
*  10. Ilgiewicz, G.: Proc. ADEPT. Žilina: Univ. Žilina 2017. ISBN 978-80-554-1342-6. P. 60.
*   11. Macherzynski, W.: Proc. ADEPT. Žilina: Univ. Žilina 2017. ISBN 978-80-554-1342-6. P. 251.
12. Douglas, E. A.: Phys. Status Solidi A 214 (2017) 1600842.
13. Klein, B.A.: ECS J. Solid State Sci Technol. 6 (2017) S3067.
14. Klein, B.A.: J. Electron. Mater. 48 (2019) 5581.
#    15. Razzak, T.: Inter. J. High Speed Electron. Systems 28 (2019) 1940009.
16. Dang, P.: Sci Adv.‏ 7 (2021) eabf1388.
17. Greco, G.: Applied Phys. Lett. 124 (2024) 012103.

Tengeri, A., Pullmannová, A., Hotový, I., Řeháček, V., Haščík, Š., Lalinský, T., : Preparation and properties of micro-hotplates for gas sensors based on GaAs. In: ASDAM 2008. Eds. Š. Haščík and J.Osvald. Piscataway: IEEE 2008. ISBN: 978-1-4244-2325-5. P. 323-326.

        1. Saxena, G.: Microsystem Technol. 21 (2015) 2331.

Haščík, Š., Hotový, I., Lalinský, T., Vanko, G., Řeháček, V., Mozolová, Ž., : Preparation of thin GaAs suspended membranes for gas microsensors using plasma etching. Vacuum 82 (2008) 236-239.

   1. Park, Y.H.: Microelectr. Engn. 87 (2010) 548.
# 2. Rezaur Raihan, M.: Progress Electromagn. Research C 21 (2011) 191.
#    3. Zhang, Z.: J. Southeast Univ. 28 (2012) 315.
4. Guo, S.: Vacuum 197 (2022) 110792.
5. Leon-Gonzalez, J.C.: Nanomater. 13 (2023) 1461.

Haščík, Š., Eliáš, P., Šoltýs, J., Martaus, J., Hotový, I., : CCl4-based reactive ion etching of semi-insulating GaAs and InP. Czechoslov. J. Phys. B 56 (2006) S1169-S1173.

1.Venugopal, V.: Surface Sci 602 (2008) 3000.
2. Park, Y.H.: Microelectr. Engn. 87 (2010) 548.
3. Lee, J.W.: Thin Solid Films 518 (2010) 6488.

Lalinský, T., Vanko, G., Grujbár, M., Mozolová, Ž., Haščík, Š., Kostič, I., : Nb-Ti/Al/Ni/Au ohmic metallic system to AlGaN/GaN. In: ASDAM 2006. Eds. J. Breza. et al. Piscataway: IEEE 2006. ISBN: 1-4244-0396-0. P. 151-154.

1. Macherzynski, W.: Adv. Electr. Electron. Engn. 14 (2016) 83.
2. Rosprim, J.P.: Proc. SPIE 10122 (2017) UNSP 1012205.

Lalinský, T., Držík, M., Chlpík, J., Krnáč, M., Haščík, Š., Mozolová, Ž., Kostič, I., : Thermo-mechanical characterization of micromachined GaAs-based thermal converter using contactless optical methods. Sensors Actuators 123-124 (2005) 99-105.

1.Tomaska, M.: Proc. Inter. Conf. Mixed Design Integrated Circuits Systems 2006. P. 504.
2. Zhang, D.X.: Optics Express 16 (2008) 13476.
3. Zhang, D.: Microscopy Res. Techn. 71 (2008) 119.
#    4. Liu, C.: J. Optoelectr. Laser 19 (2008) 1003.
*    5. Dhamarasu, N.: In: Comprehensive Microsystems. Eds.Y. Gianchandani et al. Elsevier 2008. ISBN: 978-0-444-52190-3. Vol. 1. P. 25-51.
6. Liu, C.: Micro & Nano Lett. 4 (2009) 9.
#    7. Liu, C.: High Technol. Lett. 15 (2009) 131.
#    8. Fujimoto, Y.: Nihon Kikai Gakkai Ronbunshu, A Hen/Trans. Japan Soc Mechanical Engn. A 77 (773) (2011) 134.
9. Zhang, Z.: Sensors Actuators A 182 (2012) 68.
10. Han, X.: J. Micromech. Microengn. 25 (2015) 075012.
11. Shi, B.: Applied Optics 54 (2015) 1369.
#   12. Han, X.: Guangdianzi Jiguang/J. Optoelectr. Laser 26 (2015) 43.
13. Wang, S.: Optics Comm. 383  (2017) 566.

Kuzmík, J., Konstantinidis, G., Harasek, S., Haščík, Š., Bertagnolli, E., Georgakilas, A., and Pogany, D.: ZrO2/(Al)GaN metal–oxide–semiconductor structures: characterization and application, Semiconductor Sci Techn. 19 (2004) 1364-1368.

1. Liu, C.: Applied Phys. Lett. 88 (2006) 173504.
2. Liu, C.: Applied Phys. Lett. 88 (2006) 222113.
3. Shi, L.: Applied Surface Sci 253 (2007) 3731.
4. Yang, C.: J. Non-Crystall. Solids 355 (2009) 33.
5. Feng, Q.: Chinese Phys. B 18 (2009) 3014.
6. Tian, F.: J. Electrochem. Soc. 157 (2010) H557.
7. Mizue, C.: Japan. J. Applied Phys. 50 (2011) 021001.
8. Tian, B.: Semicond. Sci Technol. 26 (2011) 085023.
9. Hu, C.-C.: IEEE Trans. Electron Devices 59 (2012) 121.
10. Feng Q.: Chinese Phys. B 21 (2012) 067305.
11. Lakshmi, B. P.: Current Applied Phys. 12 (2012) 765.
12. Kambayashi, H.: Japan. J. Applied Phys. 52 (2013) SIUNSP 04CF09.
#     13. Lee, Y.-C.: CS MANTECH (2013) 333.
14. Saghrouni, H.: Phys. B 444 (2014) 58.
15. Liu, X.: Applied Phys. Lett. 104 (2014) 263511.
16. Chiu, H.-C.: Microelectr. Reliab. 54 (2014) 1282.
17. Kodama, S.: IEEE Inter. Meeting for Future of Electron Dev., Kansai 2014.
18. Al-Hada, N.M.: PLOS ONE 9 (2014) e103134.
19. Hu, C.-C.: Mater. Sci Semicond. Process. 29 (2015) 272.
20. Hahn, H.: J. Applied Phys. 117 (2015) 214503.
21. Xing, W.: IEEE Electron Device Lett. 39 (2018) 947.
22. Reddy, V. R.: Mater. Sci Engn. B 231(2018) 74.
23. Reddy, N.: Silicon 11 (2019) 159.
24. Cui, X.: Nano Energy 68 (2020) 104361.
25. Bakkaloglu, O.F.: J. Molecul. Struct.‏ 1224 (2021) 129057.
26. Manjunath, V.: Physica B 648 (2023) 414423.
27. Qiu, S.Y.: AIP Adv. 13 (2023) 055110.
28. Hebali, K.: Trans. Electr. Electron. Mater. 24 (2023) 250.
29. Forti, M.D.: Physica Scripta 99 (2024) 025941.

Lalinský, T., Držík, M., Tomáška, M., Krnáč, M., Haščík, Š., Mozolová, Ž., Klasovity, M., Kostič, I., : Coplanar waveguides supported by InGaP and GaAs/AlGaAs membrane-like bridges. J. Micromechanics Microengn. 12 (2002) 465-469.

1. Moagar-Poladian, G.: Proc. SPIE 5455 (2004) 375.
2. Pantazis A.: J. Micromech. Microengn. 15 (2005) S53.
*     3. Matay, L.: PhD. Thesis. Bratislava: ÚI SAV 2005.
4. Yang, G.: J. Micromech. Microengn. 23 (2013) 045002.

Haščík, Š., Mozolová, Ž., Lalinský, T., Tomáška, M., Kostič, I., : Patterning of a micromechanical coplanar waveguide using a dry etching technique. Vacuum 69 (2002) 283-287.

1. Miao, J.M.: Sensors Actuators A 114 (2004) 505.
2. Tio, L.Y.: Microwave Optic. Technol. Lett. 46 (2005) 419.
*    3. Matay, L.: PhD. Thesis. Bratislava: ÚI SAV 2005.
4. Zhang, L.: Electrochim. Acta 52 (2006) 630.
5. Zafar J.: ICAST 2008: Proc. 2nd Inter. Conf.Advances Space Technol. IEEE (2008) P. 42.
6. Kim, J.K.: Current Applied Phys. 10  (2010) 416.

Hotový, I., Huran, J., Spiess, L., Liday, J., Sitter, H., and Haščík, Š.: The influence of process parameters and annealing temperature on the physical properties of sputtered NiO thin films, Vacuum 69 (2002) 237-242.

1. Bruckner, W.: J. Applied Phys. 94 (2003) 4853.
#     2. Chen, H.-L.: Mater. Trans. 46 (2005) 872.
#     3. Chen, H.-L.: Mater. Trans. 46 (2005) 2530
*     4. Yu-hua, X.: J. Guangdong Non-Ferrous Metals 15 (2005) 490.
5. Huang, J.-Z.: Trans. Nonferrous Metals Soc. China 16 (2006) 1301.
6. Ghodsi, F.E.: Surface Rev. Lett. 14 (2007) 219.
7. Reguig, B.A.: Applied Surface Sci 253 (2007) 4330.
8. Makhlouf, S.: Thin Solid Films 516 (2008) 3112.
9. Chen, H.L.: Thin Solid Films 516 (2008) 5590.
10. Jou, S.: J. Phys. Chem. Solids 69 (2008) 2804.
11. Makhlouf, S.A.: J. Materials Sci 44 (2009) 3438.
12. Shin, H.: J. Nanosci Nanotechnol. 11 (2011) 4629.
13. Saito, N.: Thin Solid Films 520 (2012) 3031.
14. Awais, M.: J. Electroanal. Chem. 689 (2013) 185.
15. Molaei, R.: Crystal Growth Design 13 (2013) 5459.
16. Solovev, A.A.: Russian J. Electrochem. 50 (2014) 647.
17. Wang, F.H.: Lecture Notes in Electr. Engn. 293 (2014) 147.
18. Mohammed, M.Z.: IEEE 40th Photovoltaic Specialist Conf. PVSC 2014 6925563, pp. 2998.
19. Sheehan, S.: J. Solid State Electrochem. 19 (2015) 975.
20. Gomaa, M.M.: J. Mater. Sci-Mater. Electron. 27 (2016) 711.
21. Atak, G.: Solid State Ionics 305  (2017) 43.
22. Khalaf, M.K.: Physica B 514  (2017) 78.
23. Hou, S.: Chemistry-an Asian J. 12 (2017) 2922.
24. Das, M. R.: Physica E 93  (2017) 243.
25. Jlassi, M.: Surfaces Interfaces 6 (2017) 218.
26. Becker, M.: Phys. Status Solidi B 255 (2018) 1700463.
27. Jamal, M.S.: Results in Phys. 14 (2019) 102360.
28. Al Boukhari, J.: Applied Phys. A 126 (2020) 74.
29. Thilagavathi, T.: J. Inorg. Organometall. Polymers Mater.‏ 31 (2021) 1217.
30. Jamal, M.S.: Applied Sci-Basel 11 (2021) 11546.
31. Madathil, R.K.: J. Phys. Chem. Solids 167 (2022) 110739.
32. Li, M.C.: Ceramics Inter. 48 (2022) 2820.
#   33. Hussain, A.: Lecture Notes in Electr. Engn. 906 (2023) 129.

Lalinský, T., Držík, M., Tomáška, M., Kostič, I., Matay, L., Mozolová, Ž., Haščík, Š., : Coplanar waveguide supported by InGaP membrane-like bridge. In: MME’01. 2001. P. 273.

    1. US. Patent No. PCT/US2004/036265. Inter. Publ. No. WO 2005/045449 A1.

Kuzmík, J., Hasenöhrl, S., Kúdela, R., Haščík, Š., Mozolová, Ž., Lalinský, T., Breza, J., Vogrinčič, P., Škriniarová, J., Fox, A., Kordoš, P., : InGaAs/InGaP HEMTs: technological optimization and analytical modelling. Vacuum 61 (2001) 333-337.

      1. Li, A.Z.: J. Crystal Growth 251 (2003) 816.

Lalinský, T., Matay, L., Haščík, Š., Mozolová, Ž., : Lalinský, T., Matay, L., Haščík, Š., and Mozolová, Ž.: Method of mechanical fixation and thermal insulation of micro(nano)mechanical structures of semiconductor based microsystems. Slov. Patent Appl. 2001. No. 1799-2001.

    1. Držík, M.: Proc. SPIE 5503 (2004) 458.

Jakovenko, J., Husák, M., Lalinský, T., Matay, L., Haščík, Š., Mozolová, Ž., : MEMCAD thermal simulation of GaAs based membrane bridge. In: MME’01. 2001. P. 186.

    1. Držík, M.: Proc. SPIE 5503 (2004) 458.

Tomáška, M., Lalinský, T., Krnáč, M., Klasovity, M., Mozolová, Ž., Haščík, Š., Kostič, I., : Micromechanical coplanar waveguide compatible with pseudomorphic AlGaAs/InGaAs/GaAs based HFETs. In: EDMO 2001. Vienna: TU Vienna, 2001. P. 211.

       1. Pantazis A.: J. Micromech. Microengn. 15 (2005) S53.
*     2. Matay, L.: PhD. Thesis. Bratislava: ÚI SAV 2005.

Haščík, Š., Mozolová, Ž., Lalinský, T., Tomáška, M., Kostič, I., : Pattering of micromechanical coplanar wavequide (MCPW) using dry etching technique. In: 12th Int. School VEIT 01. Varna 2001. P. 67.

    1. Držík, M.: Proc. SPIE 5503 (2004) 458.

Lalinský, T., Škriniarová, J., Kuzmík, J., Hasenöhrl, S., Fox, A., Tomáška, M., Mozolová, Ž., Kordoš, P., Kovačik, T., Haščík, Š., : Technology and performance of 150 nm gate length InGaP/InGaAs/GaAs pHEMTs. Vacuum 61 (2001) 323-327.

1. Li, A.Z.: J. Crystal Growth 251 (2003) 816.
2. Mil’shtein, S.: Microelectr. J. 40 (2009) 554.

Lalinský, T., Burian, E., Držík, M., Haščík, Š., Mozolová, Ž., Kuzmík, J., Hatzopoulos, Z., : Performance of GaAs micromachined microactuator. Sensors Actuators A 85 (2000) 365-370.

1. Husak, M.: 9th IEEE Int. Conf. on Electronics, Circuits and Systems – ICECS. Dubrovník 2002. ISBN 0-7803-7597-1. P. 227.
*     2. Matay, L.: PhD. Thesis. Bratislava: ÚI SAV 2005.
3. Vopilkin, E.A.: J. Micromech. Microengn. 18 (2008) 095006.
*     4. Dhamarasu, N.: In: Comprehensive Microsystems. Elsevier: 2008. ISBN: 978-0-444-52190-3. Vol. 1. P. 25-51.

Hotový, I., Huran, J., Spiess, L., Čapkovic, R., and Haščík, Š.Preparation and characterization of NiO thin films for gas sensor applications, Vacuum 58 (2000) 300-307.

  1. Porqueras, I.: Thin Solid Films 398 (2001) 41
2. Srivastava, D.N.: Ultrasonics Sonochemistry 10 (2003) 1.
3. Wu, L.L.: Materials Lett. 58 (2004) 2700.
*       4. Ai, D.: China Particuology 2 (2004) 157.
5. Srivastava, D.N.: Ultrasonics Sonochem. 12 (2005) 205.
6. Yang, T.S.: J. Vacuum Sci Technol. A 23 (2005) 1238.
7. Han, C.-H.: Digest Techn. Papers – TRANSDUCERS ’05 (2005) 1911.
8. Belous, A.G.: Russian J. Applied Chemistry 79 (2006) 345.
9. Yu, M.: J. Univ. Sci Technol. Beijing 13 (2006) 169.
10. Han, Ch.: Korean J. Chemical Engn. 23 (2006) 362.
11. Abbey, B.: J. Applied Phys.  99 (2006) Art.  no. 124914.
12. Wu, Y.: Materials Lett. 61 (2007) 3174.
13. Li, Q.: Materials Lett. 61 (2007) 1615.
14. Tresback, J.S.: IEEE Trans. Nanotechnol. 6 (2007) 676.
15. Tresback, J.S.: J. Mater. Research 23 (2008) 2047.
16. Luyo, C.: Sensors Actuators B 138 (2009) 14.
17. Das, S.: J. Alloys Compounds 505 (2010)  L19.
18. Farhadi, S.: Polyhedron 30 (2011) 1244.
19. Guziewicz, M.: Optica Applicata 41 (2011) 431.
#     20. Soleimanpour, A.M. : Inter. Semicond. Device Research Symp. – ISDRS 2011. IEEE, art. no. 6135379. ISBN 978-145771-7550. 6135379
#     21. Grochowski, J.: Proc. Inter. Spring Seminar on Electron. Technol. Košice: TU Kosice, 2011. P. 63. ISBN: 978-1-4577-2112- 0.
22. Ding, Y.: J. Materials Chem. 22 (2012) 980.
23. Soleimanpour, A.M.: Mater. Sci Engn. C 32 (2012) 2230.
24. Wang, B.: ACS Applied Mater. Interfac. 4 (2012) 5691.
25. Soleimanpour, A.M.: ACS Applied Mater. Interfaces 4 (2012) 4651.
#     26. Mathiyan, J.: J. Applied Sci 12 (2012) 1686.
27. Teoh, L.G.: Mater. Trans. 53 (2012) 2135.
28. Castro-Hurtado, I.: Acta Materialia 61 (2013) 1146.
29. Nalage, S.R.: J. Mater. Sci-Mater. Electron. 24 (2013) 368.
30. Soleimanpour, A.M.: Sensors Actuators B 182 (2013) 125.
31. da Silva, M.: J. Mater. Sci-Mater. Electron. 24 (2013) 1823.
32. El-Kemary, M.: Mater. Sci Semicond. Process. 16 (2013) 1747.
33. Deore, M. K.: Sensor Lett. 11 (2013) 1919.
34. Reddy, A.K.Y.: J. Alloys Comp. 583 (2014) 396.
35. Reddy, A.K.Y.: Sci Adv. Mater. 6 (2014) 178.
36. Farag, A.A.M.: Polyhedron 71 (2014) 75.
37. Sharma, R.: Optik  125 (2014) 6751.
38. Ben Amor, M.: Mater. Sci Semicond. Process. 27 (2014) 994.
#      39. Kumar, R.:  Lecture Notes in Electrical Engn. 268 (2014) LNEE, pp. 121.
40. da Silva, M.R.: Ionics 21 (2015) 1407.
#      41. Thangamani, G.: Inter. J. ChemTech Research 8 (2015) 70.
42. Zhang, Y.: J. Mater. Sci-Mater. Electron. 26 (2016) 1817.
43. Sato, K.: Japan. J. Applied Phys. 55 (2016) 06GJ10.
44. Lavanya, J.: AIP Conf. Proc. 1724 (2016) 020050.
45. Fayemi, O.E.: J. Nanomater. (2016) 9614897.
46. Helan, V.: Results in Phys. 6 (2016) 712.
47. Sankar, S.: Optik 127 (2016) 10727.
48. Jacobs, C.B.:  Proc. SPIE 9749 (2016) 97491Q.
49. Nasseri, M.A.: Applied Organometall. Chem. 30 (2016) 978.
50. Jacobs, C.B.: J. Photonics for Energy 6 (2016) 038001.
51. Bespalova, Zh.I.: Nanosystems-Phys. Chem. Mathemat. 7 (2016) 433.
52. Gomez-Perez, J.: Catal. Today 284 (2017) 37.
53. Ningsih, S.K.W.: Makara J. Sci 21 (2017) 19.
#     54. Nam: W.J. ECS Transactions 66 (2015) 275.
55. Augustine, C.: Digest J. Nanomater. Biostruct. 12 (2017) 523.
56. Cerc Korosec, R.: Thermochim. Acta 655 (2017) 344.
57. Das, M.R.: Physica E 93 (2017) 243.
58. Augustine, C.: J. Non-Oxide Glasses 9 (2018) 85.
59. Chandrakala, M.: Mater. Chem. Phys. 201 (2017) 344.
60. Patel, K.N.: Mater. Res. Express 4 (2017) 105027.
61. Farag, H. K.: J. Mater. Sci-Mater. Electron. 28 (2017) 15480.
62. Dhanisha, K.M.: Inter. J. Nanosci 17 (2018) 1760039.
63. Sabzehparvar, M.: Mater. Today-Proc. 5 (2018) SI15821.
64. Zhao, S.: Ceramics Inter. 44 (2018) 753.
65. Arble, C.: Thin Solid Films 660 (2018) 365.
66. Potlog, T.: Mater. Res. Express 6 (2019) 096440.
67. Hammad, A.H.: Physica B 568 (2019) 6.
68. Ganesh, V.: Mater. Res. Express 6 (2019) 086439.
69. Zhang, Y.: Applied Surface Sci 481 (2019) 138.
70. Mateos, D.: Ceramics Inter. 45 (2019) 11403.
71. Derikvand, Z.: Applied Organometall. Chem. 33 (2019) e4864.
72. Kate, R.S.: J. Electron. Mater. 48 (2019) 3220.
73. Behera, B.: J. Breath Res. 13 (2019) 024001.
74. Liang Y.: J. Inorg. Mater. 34 (2019) 79.
75. Zaheer, A.: J. Nanoelectron. Optoelectron. 14 (2019) 1304.
#    76. Joseph, S.: Inter. J. Thin Film Sci Technol. 8 (2019) 131.
77. Manthrammel, M.A.: Chinese J. Phys. 66 (2020) 91.
78. Wilson, R.L.: ACS Sensors‏ 5 (2020) 1389.
79. Boulila, S.: Phil. Magazine Lett. 100 (2020) 283.
80. Baraskar, P.: AIP Conf. Proc. 2220 (2020) 020161.
81. Gurenko, V.E.: Mater. Lett. 279 (2020) 128478.
82. Gupta, P.: J. Mater. Sci-Mater. Electron. 32 (2021) 3529.
83. Abbasnejad, S.: Russian J. Electrochem. 57 (2021) 478.
84. Kuba, A.S.M.: Mater. Today-Proc. 49 (2022) 2741.
85. Hashim, H.T.: J. Nanostruct. 12 (2022) 882.
86. Dastan, D.: Mater. Sci Semicond. Process. 154 (2023) 107232.
#     87. Bala, R.: AIP Conf. Proc. 239319 (2022) 020009.
88. Hamdan, S.A.: Jordan J. Phys. 16 (2023) 373.
89. Nabi, G.: Inorg. Chem. Comm. 157 (2023) 111448.
90. Abdur, R.: Solar Energy 271 (2024) 112443.
91. Barad, C.: Heliyon 10 (2024) e31275.

Lalinský, T., Burian, E., Držík, M., Haščík, Š., Mozolová, Ž., and Kuzmík, J.: Thermal actuation of a GaAs cantilever beam, J. Micromechanics Microengn. 10 (2000) 293-298.

*     1. Husak, M.: ASDAM ’02. Piscataway: IEEE 2002. P. 75.
2. Gaspar, J. J. Non-Crystalline Solids 299 (2002) 1224.
#    3. Husak, M.: IMAPS’2002. Denver, 2002. P. 749.
4. Chu, V.: Mater. Res. Soc. Symp. – Proc. 715 (2002)  745.
5. Gaspar, J. J.: J. Applied Phys. 93 (2003) 10018.
*     6. Davis, Z.J.: PhD. Thesis. Lyngby: TU Denmark 2003.
7. Enikov, E.T.: J. Microelectromech. Systems 14 (2005) 788.
*     8. Matay, L.: PhD. Thesis. Bratislava: ÚI SAV 2005.
9. Ramos, D.: Sensors 7 (2007) 1757.
10. Vopilkin, EA.: J. Micromech. Microengn. 18 (2008) 095006.
#   11. Kramkowska, M.: Materials Sci – Poland 26 (2008) 173.
*   12. Dhamarasu, N.: In: Comprehensive Microsystems. Eds.Y. Gianchandani et al. Elsevier 2008. ISBN: 978-0-444-52190-3. Vol. 1. P. 25-51.
*    13. Gopal, M.: PhD Thesis. Nat. Univ. Singapore 2008.
14. Du, K.: Advanced Materials Res. 97-101 (2010) 4225.
15. Toda, M.: Rev. Sci Instrum. 81 (2010) 055104.
16. Ma, H.Y.: J. Micromech. Microengn. 20 (2010) 055036.
#    17. Wu, Y.B.: Microelectron. Engn. 87 (2010) 2035.
#    18. Voiculescu, I.: Nanocantilever Beams: Modeling, Fabrication and Applications. Pan Stanford Publ. Pte. 2016. ISBN: 978-981461324-8. P. 411.
19. Wang, X.: Sci Rep. 7 (2017) 4602.
20. Brown, K.A.: ACS Nano 13 (2019) 8.
21. Wei, L.: Microsystem Technol.-Micro-And Nanosystems-Inf. Storage Process. Systems 29 (2023) p. 1.

Hotový, I., Huran, J., Spiess, L., Haščík, Š., and Řeháček, V.: Preparation of nickel oxide films for gas sensors applications Sensors Actuators B 57 (1999) 147-152.

1. Porqueras, I.: Thin Solid Films 398 (2001) 41.
2. Bosco, C. A. C.: Phys. Rev. B 66 (2002)  125406.
*    3. Paetzold, A.: Dissertation zur Erlangung des Dr. rer. nat. Kassel: 2002.
4. Zhang, C.F.: Trans. Nonferrous Metals Soc. China 13 (2003) 1440.
5. Zhang, C.: Yazawa Inter. Symp. 3 (2003) 417.
#    6. Acosta, D.R.: Microscopy and Microanalysis 9 (2003) 620.
7. Zhan, Y.J.: J. Solid State Chem. 177 (2004) 2281.
*    8. Gomes, K.Q.: Tese de Doutor em Ciencia e engenharia de materiais. Sao Carlos: 2004.
9. Zhan, J.: Trans. Nonferrous Metals Soc. China 15 (2005) 926.
10. Magana, C.R.: Solar Energy 80 (2006) 161.
11. Yu, M.: J. Univ. Sci Technol. Beijing 13 (2006) 169.
12. Li, X.L.: Solid State Comm. 137 (2006) 581.
13. Karakasidis, T.E.: Surface Sci 600 (2006) 1952.
14. Sasi, B.: Nanotechnology 18 (2007) 115613.
15. Perentes, A.: J. Vacuum Sci Technol. B 25 (2007) 2228.
16. Yang, L.X.: J. Solid State Chem. 180 (2007) 2095.
17. Gunjakar, J.L.: Sensors Actuators B 131 (2008) 356.
18. Varghese, B.: Chemistry Mater. 20 (2008) 3360.
#   19. Yuan, Z.: J. Chinese Ceramic Soc. 36 (2008) 341.
20. Nandy, S.: J. Phys.-Cond. Matter 21 (2009) 115804.
21. Qiu, Y.J.: Nanoscale Research Lett. 4 (2009) 173.
22. Qiu, Y.J.: Materials Lett. 63 (2009) 200.
23. Qiao, H.X.: J. Nanomater. (2009) 795928.
24. Wei, Z.Q.: J. Alloys Compounds 479 (2009) 855.
25. Salavati-Niasari, M.: Inorganica Chim. Acta  362 (2009) 3691.
26. Ma, M.G.: Mater. Lett. 63 (2009) 1791.
27. Kumari, L.: Crystal Research Technol. 44 (2009) 495.
28. Rani, J.D.V.: J. Colloid Interface Sci 341 (2010) 48.
29. Romero, R.: Thin Solid Films 518 (2010) 4499.
30. Das, N.S.: Physica E 42 (2010) 1377.
31. Rahman, M.M.: Solid State Ionics 180 (2010) 1646.
32. Wei, Z.P.: ACS NANO 4 (2010) 4785.
33. Das, S.: J. Alloys Compounds 505 (2010)  L19.
34. Tadic, M.: Materials Lett. 64 (2010) 2129.
35. Gavade, C.: Nuclear Instrum. Methods Phys. Research B 268 (2010) 3127.
36. Kim, D.S.: Proc. SPIE 7660  (2010).
37. Rubio-Marcos, F.: J. Alloys Compounds 509 (2011) 2891.
38. Jiang, W.T.: Applied Surface Sci 257  (2011) 3253.
39. Hosny, N.M.: Polyhedron 30 (2011) 470.
40. Farhadi, S.: Polyhedron 30 (2011) 1244.
41. Farhadi, S.: Polyhedron 30 (2011) 971.
42. Hayat, K.: J. Molecular Catalysis A 336 (2011) 64.
43. Wang, T.: NANO 6 (2011) 67.
44. Gandhi, A.C.: Nanoscale Research Lett. 6 (2011) 485.
45. Zhao, J.: Materials Research Bull. 46 (2011) 2427.
#  46. Das, N.S.: Inter. J. Nanosci 10 (2011) 985.
47. Dalavi, D.S.: J. Solid State Electrochem. 16 (2012) 253.
48. Amin, R.S.: Electrochim. Acta 59 (2012) 499.
49. Kalam, A.: Materials Character. 68 (2012) 77.
50. Tahmasian, A.: Inorganica Chim. Acta 387 (2012) 327.
51. Atla, S. B.: Chemical Engn. J. 184 (2012) 333.
52. Karpinski, A.: Thin Solid Films 520 (2012) 3609.
53. Abbasi, M.A.: Sensors 12 (2012) 15424.
54. Sekiya, K.: Microelectr. Engn. 98 (2012) 532.
55. Reddy, A. M.: J. Optoelectr. Advanced Mater. 14 (2012) 763.
56. Kim, D.S.: J. Applied Phys. 112 (2012) 034504.
57. Hamid, M.A.: Advanced Mater. Research. 399-401 (2012) 581.
58. Masoomi, M.Y.: Coordinat. Chem. Rev. 256 (2012) 2921.
59. Teoh, L.G.: Mater. Trans. 53 (2012) 2135.
60. Khalaji, A.D.: J. Cluster Sci 24 (2013) 189.
61. Khalaji, A.D.: J. Cluster Sci 24 (2013) 209.
62. Shi, J.: Micropor. Mesoporous Mater. 168 (2013) 188.
63. Hasan, N.: Talanta 103 (2013) 38.
64. Nalage, S.R.: J. Mater. Sci-Mater. Electron. 24 (2013) 368.
65. Molaei, R.: J. Applied Phys. 113 (2013) 233708.
66. Awais, M.: J. Electroanal. Chem. 689 (2013) 185.
67. Shin, Y.: J. Korean Phys. Soc 63 (2013) 1199.
68. Samiey, B.: Chimica Slovenica 60 (2013) 763.
69. Barakat, A.: Inter. J. Molecular Sci 14 (2013) 23941.
70. Xie, Q.: RSC Adv. 3 (2013) 24430.
#   71. Wu, J.-R.: Huanan Ligong Daxue Xuebao/J. South China Univ. Technol.
Natural Sci) 41 (2013) 135-141+146.
#    72. Wan, M.: Proc. Meetings on Acoust. 19 (2013) 045024.
73. Liu, L.: Electrochim. Acta 114 (2013) 42.
74. Ahmadisoltansaraei, K.: Inter. J. Minerals Metall. Mater. 21 (2014) 726.
75. Sharma, R.: Mater. Sci Semicond. Process. 23 (2014) 42.
76. Dominguez-Canizares, G.: J. Mater. Sci 49 (2014) 2773.
77. Thi, T.D.V.: Industrial Engn. Chem. Res. 53 (2014) 3888.
78. Moghaddam, J.: Korean J. Chemical Engn. 31 (2014) 503.
79. Guo, H.: Particle Particle Systems Character. 31 (2014) 374.
80. Basith, N. M.: J. Nanosci Nanotechnol. 14 (2014) 2577.
81. Gowthami, V.: Mater. Sci Semicond. Process. 27 (2014) 1042.
82. Rashad, M.M.: Applied Phys. A 117 (2014) 877.
83. Gowthami, V.: Physica B 452 (2014) 1.
84. Vu, T.T.D.: Industrial Engn. Chemistry Research 53 (2014) 3888.
85. Bharathi, B.: J. New Mater. Electrochem. Systems 17 (2014) 173.
86. Rajendran, V.: Mater. Sci Semicond. Process. 38 (2015) 203.
87. Chen, T. F.: J. Alloys Comp. 643 (2015) 167.
88. Salvadori, M.R.: PLOS ONE 10 (2015) e0129799.
89. Kumar, R.: Thin Solid Films 583 (2015) 233.
90. Sheehan, S.: J. Solid State Electrochem. 19 (2015) 975.
91. Iwueke, D.C.: J. Mater. Sci-Mater. Electron. 26 (2015) 2236.
92. Paeng, D.: J. Phys. Chem. C 119 (2015) 6363.
93. Madhup, M.K.: Progress In Organic Coat. 80 (2015) 1.
94. Chakrabarty, N.: AIP Conf. Proc. 1665 (2015) 050072.
95. Anandan, K.: Mater. Sci Engn. B 199 (2015) 48.
96. Park, S.: Nanosci Nanotechnol. Lett. 7 (2015) 713.
97. Ranjbar, M.: J. Mater. Sci-Mater. Electron. 26 (2015) 8029.
98. Al-Heniti, S. H.: Sci Advanced Mater. 7 (2015) 2459.
99. Vernardou, D.: Chemical Vapor Dep. 21 (2015) 369.
100. Tripathi:S.K, Solid State Phenomena 232 (2015) 1
#  101. Ponnusamy: P.M, Int. Journal of Chemical Sciences 13 (2015) 683.
102. Sun, G.-J.: Ceramics Inter. 42(2016) 1063.
103. Ye, Y.: Applied Surface Sci 362 (2016) 20.
104. Kaur, N.: Nanotechnol. 27 (2016) 205701.
105. Kaviyarasu, K.: Ceramics Inter. 42 (2016) 8385.
106. Park, S.: Bull. Korean Chemical Soc 37 (2016) 713.
107. El-Megharbel, S.M.: J. Molecular Liquids 216 (2016) 608.
108. Hu, C.-W.: J. Mater. Chem. C 4 (2016) 5390.
109. Sharma, R.: Optik 127 (2016) 4661.
110. Shajudheen, V.P.M.: Mater. Today-Proc. 3 (2016) 2450.
111. Srivastava, M.: RSC Adv. 6 (2016) 109083.
112. Sadeghi, M.: J. Environmental Chem. Engn. 4 (2016)  2990.
113. Zhang, Z.: J. Nanopart. Research 18 (2016) 247.
114. Lashanizadegan, M.: J. Ceramic Process. Research 17 (2016) 586.
#   115. Al Majthoub, M.M.: J. Comput. Theoret. Nanosci 13 (2016) 7014.
116. Mutkule, S.U.: J. Alloys Comp. 695 (2017) 2008.
117. Ditta, M.A.: Russian J. Applied Chem. 90 (2017) 151.
118. Agrawal, S.: J. Lumin. 184 (2017) 250.
119. Sadeghi, M.: Applied Surface Sci 400 (2017) 471.
120. Soofivand, F.: J. Photochem. Photobiol. A 337 (2017) 44.
121. Ben Mansour, N.:J. Mater. Sci-Mater. Electron. 28 (2017) 11284.
122. Naeemy, A.: J. Analyt. Chem. 72 (2017) 783.
123. Lacerda, M. M.: Applied Phys. Lett. 110 (2017) 202406.
124. Dubey, P.: J. Phys. Conf. Ser. 836  (2017) UNSP 012040.
125. Bharathy, G.: J. Mater. Sci-Mater. Electron. 28  (2017) 17889.
126. Ashik, U. P. M.: Comptes Rendus Chimie 20  (2017) 896.
127. Das, M. R.: Physica E 93 (2017) 243.
128. Dubey, P.: AIP Conf. Proc. 1942  (2018) UNSP 140072.
129. Dubey, P.: RSC Adv. 8  (2018) 5882.
130. Das, M. R.: J. Mater. Sci-Mater. Electron. 29  (2018) 1216.
131. Khan, S.: Mater. Sci Engn. B 229  (2018) 155.|
132. Bharathy, G.: Physica B 530  (2018) 75.
133. Rawool, S.A.: Applied Catal. B 221  (2018) 443.
134. Oh, S.: J. Nanosci Nanotechnol. 18 (2018) 6213.
135. Arif, M.: J. Electronic Mater. 47 (2018) 3451.
136. Iqbal, M. J.: Mater. Research Express 5  (2018) 065002.
137. Rahman, M. A.: J. Alloys Compounds 742 (2018) 421.
138. Mondal, M.: J. Electroanalyt. Chem. 813 (208) 116.
139. Dhanisha, K.M.: Inter. J. Nanosci 17 (2018) 1760039.
140. Usha, V.: Inter. J. Nanosci 17 (2018) 1850003.
141.Guillemot, T.: Thin Solid Films 661 (2018) 143.
142. Ben Mansour, N.: J. Inorganic Organometall. Polymers Mater. 29 (2019) 192.
143. Borah, D.J.: Mater. Sci Semicond. Process. 93 (2019) 111.
144. Binod, D.C.: IEEE Trans. Magnet. 55 (2019) 2900205.
145. Lee, J.H.: J. Power Sources 412 (2019) 425.
146. Parwani, S.: AIP Conf. Proc. 2100 (2019) 020092.
147. Dubey, P.: AIP Conf. Proc. 2100 (2019) 020171.
148. Rahman, M. A.: SN Applied Sci 1 (2019) 221.
149. Hammad, A.H.: Physica B 568 (2019) 6.
150. Khatri, A.: Bull. Mater. Sci 42 (2019) 141.
151. Mateos, D.: Ceramics Inter. 45 (2019) 11403.
152. Mohammadi, M.: J. Petroleum Sci Engn. 177 (2019) 1103.
153. Govindarajan, B.: J. Mater Sci-Mater. Electron. 30 (2019) 6519.
154. Chaudhary, A.: ACS Applied Electr. Mater. 1 (2019) 892.
155. Shujah, T.: Nanosci Nanotechnol. Lett. 11 (2019) 1050.
156. Wang, F.: Phys. Chem. Chem. Phys. 21 (2019) 17852.
157. Becker, M.: J. Applied Phys. 126 (2019) 134901.
158. Ganapathi, S.K.: ACS Applied Nano Mater. 2 (2019) 6726.
159. Abboud, M.: New J. Chem. 44 (2020) 3402.
160. Williams, L.: Mater. Chem. Phys. 242 (2020) 122469.
161. Zeb, A.: Mater. Chem. Phys. 239 (2020) 122036.
162. Shin, J.: Advanced Mater. 32 (2020) 1905527.
#     163. Priyamvada, D.: Inter. Conf. Applied Electromagn., Signal Process. Comm. AESPC 2018, no. 9033295.
164. Lee, J.H.: J. Soc Inf. Display 27 (2019) 806.
165. Salunkhe, P.: Mater. Res. Express 7 (2020) 016427.
166. Giri, N.: J. Mater. Sci-Mater. Electron. 31 (2020) 12628.
167. Boulila, S.: Phil. Magazine Lett. 100 (2020) 283.
168. Perumal, R.: Mater. Today-Proc. 33 (2020)‏ ‏ 3989.
169. Revathy, M.S.: Mater. Today-Proc. 33 (2020)‏ 1165.
170. Karamzadeh, A.: Solid State Comm. 325 (2021) 114167.
171. Gupta, P.: J. Mater. Sci-Mater. Electron. 32 (2021) 3529.
172. Pehlivanoglu, S.A.: Physica B 603 (2021) 412482.
173. Jeba, S.V.: Inorg. Nano-Metal Chem. 51 (2020) 1431.
174. Momeni, B.Z.: Applied Organometal. Chem. 35 (2021) 6179.
175. Kumar, V.P.: Optik 231 (2021) 166388.
176. Rubab, R.: Colloids Surfaces A-Physicochem. Engn. Aspects 615 (2021) 126253.
177. Alharthi, F.A.: Crystals 11 (2021) 456.
178. Maity, P.C.: J. Mater. Sci-Mater. Electron. 32 (2021) 16761.
179. Chandekar, K.V.: J. Mater. Res. Technol.-JMR&T 15 (2021) 2584.
#     180. Lekshmi, M.S.: Key Engn. Mater. 877 (2021) 96.
#     181. Dube, P.: AIP Conf. Proc. 2369 (2021) 020148.
#     182. Deotale, A.J.: AIP Conf. Proc. 2369 (2021) 020052.
#      183. Mohammed, K.G.: IOP Conf. Ser.: Earth and Environ. Sci 790 (2021) 012080.
184. Chang, Y.T.: Applied Sci-Basel 12 (2022) 7206.
185. Zouridi, L.: Adv. Mater. Technol. 7 (2022) 2101491.
186. Narender, S.S.: Chem. Engn. Technol. 45 (2022) 397.
187. Sivakumar, S.: Mater. Technol. 37 (2022) 1375.
188. Smirnova, K.V.: Izv. Vys. Ucheb. Zaved. Khim. Khim. Tekhnolog. 65 (2022) 112.
189. Khanna, S.: Ceram. Inter. 48 (2022) SI28969.
190. Murugesan, N.: Solar Energy 247 (2022) 185.
191. Khanna, S.: Ceramics Inter. B 48 (2022) SI28969.
#       192. Kumar, V.P.: J. Phys.: Conf. Ser. 2357 (2022) 012015.
193. Srivastava, S.: Mater. Res. Bull. 165 (2023) 112330.
194. Meng, L.J.: J. Hazard. Mater. 454 (2023) 131441.
195. Mala, N.A.: J. Mater. Sci-Mater. Electron. 34 (2023) Iss. 6.
196. Lahiji, F.A.F.: J. Vacuum Sci Technol. A 41 (2023) 063402.
197. Kumar, V.P.: Optic. Mater. 142 (2023) 114063.
198. Michel, J.: Progress in Photovolt.: Research and Appl. 31 (2023) 380.
199. Gogoi, H.P.: J. Molecul. Struct. 1303 (2024) 137583.
200. Shi, W.: J. Applied Phys. 135 (2024) 073901.
201. Kala, K.: Surfaces Interfaces 49 (2024) 104438.
202. Kathiravan, P.: J. Indian Chem. Soc 101 (2024) 101171.

Lalinský, T., Haščík, Š., Mozolová, Ž., Burian, E., Držík, M., : The improved performance of GaAs micromachined power sensor microsystem Sensors Actuators A 76 (1999) 241-246.

*     1. Fuchs, P.: 13th Inter. Czech – Slovak Sci Conf. Brno:  2003. P. 85.
*     2. Michalek, R.: 13th Inter. Czech – Slovak Sci Conf. Brno:  2003. P. 99.
3. Pantazis A.: J. Micromech. Microengn. 15 (2005) S53.
*     4. Matay, L.: PhD. Thesis. Bratislava: ÚI SAV 2005.
5. Fuchs, P.: Measurement 2005. P. 416.
6. Abu-Lail, NI.: Sensors Actuators B 114 (2006) 371.
7. Valiaev, A.: Langmuir 23 (2007) 339.
8. Majchrak, M.: 17th Inter. Conf. Radioelektronika. (2007) 87.
#     9. Huang, C.-C.: ICSICT-2006: Proc. 2006 8th Inter. Conf. Solid-State Integrated Circuit Technol. (2007) art. no. 4098173.
#    10. Tian, T.: Chinese J. Sensors Actuators 21 (2008) 611.
*    11. Dhamarasu, N.: In: Comprehensive Microsystems. Eds.Y. Gianchandani et al. Elsevier 2008. ISBN: 978-0-444-52190-3. Vol. 1. P. 25-51.
12. Wang, D.B.: J. Micromech. Microengn. 19 (2009) 125012.
13. Lojko, B.: XIX IMEKO 2009. P. 724.
14. Wang, D.B.: J. Micromech. Microengn. 20 (2010) 075021.
15. Wang, D.: Microsystem Technol.-Micro-Nanosys.-Inf. Storage Process. Systems  17 (2011) 1343.
#    16. Wang, D.B.: TRANSDUCERS’11. 2011,art. no. 5969125, p. 32.
17. Wang, D.-B.: J. Microelectromech. Systems 21 (2012) 121.
18. Wang, D.B.: J. Micromech. Microengn. 22 (2012) 065025.
19. Wang, D.B.: IEEE Sensors J. 12 (2012) 1349.
20. Wang, D.B.: Sensors Actuators A 188 (2012) SI95.
21. Pai, P.: Proc. IEEE Sensors (2012) 6411383.
22. Wang, D.: Chinese J. Electron. 24 (2015) 884.
23. Wang, D.B.: TRANSDUCERS 2015. Art. no. 7181139, p. 1179.
24. Han, J.: J. Micromech. Microengn. 26 (2016) 094001.
25. Yan, H.: IEEE Sensors J. 17 (2017) 2029.
26. Ando, T.: Sensors Actuators A 296 (2019)340.

Hotový, I., Búc, D., Haščík, Š., and Nennewitz, O.: Characterization of NiO thin films deposited by reactive sputtering, Vacuum 50 (1998) 41.

1. Pejova, B.: Applied Surface Sci 165 (2000) 271.
2. Wang, S.Y.: Sensors Actuators B 69 (2000) 22.
3. Valeri, S.: Thin Solid Films 400 (2001) 16.
4. Porqueras, I.: Thin Solid Films 398 (2001) 41
5. Kohmoto, O.: J. Magn. Magn. Mater. 226 (2001) 1627.
6. Patil, P.S.: Applied Surface Sci 199 (2002)  211.
7. Wang, S.-Y.: Materials Sci Engn. B 90 (2002) 133.
8. Zheng, J.A.: IEEE Sensors J. 3 (2003) 438.
9. Giovanardi, C.: Phys. Rev. B 69 (2004) 075418.
10. Kamal, H.: J. Crystal Growth 262 (2004) 424.
11. Lee, M.: Integrated Ferroel. 68 (2004) 19.
*   12. Avendano Soto, E.D.: PhD Thesis. Acta Univ. Upseliensis. Uppsala: Faculty Sci Technol. 2004. ISBN: 91-554-5996-X.
13. Yang, J.L.: Thin Solid Films 488 (2005) 242.
14. Lee, J.W.: Integrated Ferroelect. 74 (2005) 71.
15. Huang, J.Z.: Trans. Nonferrous Metals Soc. China. 16 (2006) 1301.
16. Moon, S.E.: J. Korean Phys. Soc. 49 (2006) 1066.
17. Ghodsi, F.E.: Surface Rev. Lett. 14 (2007) 219.
#   18. Huang, J.-Z.: Guangdianzi Jiguang/J. Optoelectr. Laser 18 (2007) 392.
19. Makhlouf, S.A.: Thin Solid Films 516 (2008) 3112.
20. Kobayashi, K.: Thin Solid Films 516 (2008) 5903.
21. Stamataki, M.: Physica Status Solidi A 205 (2008) 2064.
22. Makhlouf, S.A.: J. Materials Sci 44 (2009) 3438.
23. Subramanian, B.: J. Materials Sci-Mater. Electr. 20 (2009) 953.
24. Patil, L.A.: Sensors Actuators B 143 (2009) 270.
25. Lee, Y.M.: Solid-State Electron. 53 (2009) 1116.
26. Chen, S.C.: Surface & Coatings Technol. 205 (2010) S236.
27. Ratnadurai, R.: Procedia Engn. 5 (2010) 1059.
28. Pejova, B.: Bulk Mater.: Research, Technol. and Appl. Nova Sci Publ. 2010. ISBN 978-1606929636. P. 195-244.
29. Shin, H.: J. Nanosci Nanotechnol. 11 (2011) 4629.
30. Reddy, A.M.: J. Optoelectron. Advanced Mater. 14 (2012) 763.
31. Ohtsuki, T.: Japan. J. Applied Phys. 52 (2013) SIUNSP 06GG10.
32. Koo, G.-H.: Proc. SPIE 8704 (2013) 87041P.
33. Jang, W.-L.: Sci Adv. Mater. 5 (2013) 1346.
34. Deokate, R.J.: Sensors Actuators B 193 (2014) 89.
35. Zhang, D.: J. Vacuum Sci Technol. B 32 (2014) 031202.
36. Burgstaller, W.: J. Mater. Res. 29 (2014) 148.
37. Bagwaiya, T.: AIP Conf. Proc. 1591 (2014) 938.
38. Pavelkova, T.: J. Radioanal. Nuclear Chem. 304 (2015) 245.
39. Liu, H.: Proc. Annual Holm Conf. on Electrical Contacts (2015) 7355108, p. 266.
40. Yu, H.: Mater. Sci-Medziagotyra 22 (2016) 184.
#   41. Khan, K.: MRS Advances 1 (2016) 3341.
42. Dubey, P.: J. Phys. Conf. Ser. 836 (2017) UNSP012040.
43. Ukoba, K.O.: Renewable Sustain. Energy Rev. 82 (2018) 2900.
44. Shuihab, A.: AIP Conf. Proc. 1968 (2018) UNSP020026.
45. Dubey, P.: AIP Conf. Proc. 1942 (2018) UNSP 140072.
46. Dubey, P.: RSC Adv. 8 (2018) 5882.
47. Soylu, M.: Microelectron. Engn. 202 (2018) 51.
48. Pintor-Monroy, M.I.: ACS Applied Mater. Interf. 10 (2018) 38159.
49. Kumar, M.: Mater. Res. Express 6 (2019) 096404.
50. Hammad, A.H.: Physica B 568 (2019) 6.
51. Pintor-Monroy, M.I.: ACS Applied Mater. Interf. 11 (2019) 27048.
52. Yin, X.: Solar RRL 3 (2019) 1900001.
53. Khan, K.: J. Electronic Mater.49 (2020) SI333.
54. Huang, T.-M.: J. Applied Phys. 128 (2020) 043302.
55. Zhou, X.: IEEE Electron Dev. Lett. 41 (2020) 1017.
56. Kumar, M.: Mater. Today-Proc. 26 (2020) 82.
57. Ren, Y.: Vacuum 182 (2020) 109784.
58. Huang, F.P.:Japan. J. Applied Phys. 61 (2022) 014002.
59. Mayandi, J.: Thin Solid Films 744 (2022) 139083.
60. Park, H.: Adv. Photon. Res. 2 (2021) 2000178.
61. GangaReddy, K.: Sensors Actuators A 346 (2022) 113876.
62. Pandian, M.G.M.: Thin Solid Films 760 (2022) 139486.
63. Li, J.S.: J. Vacuum Sci Technol. A 41 (2023) 013405.
64. Lu, X.: J. Semicond. 44 (2023) 061802.
65. Nabi, G.: Inorg. Chem. Comm. 157 (2023) 111448.
66. Hamdan, S.A.: Jordan J. Phys. 16 (2023) 373.
67. Köksal, O.K.: Acta Phys. Polonica A 143 (2023) 362.
68. Kumar, M.: Iranian J. Chem. Chem. Engn. 42 (2023) 3249.
69. Min, J.Y.: J. Mater. Chem. C 12 (2024) 11020.

Lalinský, T., Haščík, Š., Mozolová, Ž., Držík, M., and Hatzopoulos, Z.: Micro-machined power sensor microsystem. In: MME 98. Eds. P.Ohlchers et el. Ulwik: 1998. P. 139-142.

#   1. Petrini, I.: J. Micromech. Microengn. 10 (2000) 218.
2. Konstantinidis, G.: Proc. SPIE 4559 (2001) 157.
*   3. Jakovenko, J.: MME 2001. Cork 2001. P. 225.
*   4. Petrini, I.: Micromachined Microwave Devices and Circuits. Bucuresti: Editura Acad. Romane 2002. P. 102.
5. Muller, A.: 33rd European Microwave Conf. 2003. P. 33.
6. Muller, A.: Proc. Inter. Semicond. Conf. (2004) 147.
7. Pantazis, A.: J. Micromech. Microengn. 15 (2005) S53.
8. Konstantinidis, G.: Proc. SPIE 6415 (2007) C4150.
*   9. Husak, M.: Mikrosenzory a mikroaktuátory. Praha: Academia 2008. 544 s.

Lalinský, T., Hrkút, P., Matay, L., Kostič, I., Haščík, Š., Hudek, P., : Nanometer T-gates based on polysilicon/polyimide supported layers. In: ASDAM 98. Ed. J.Breza. Piscataway: IEEE 1998. P. 183.

       1. Dreeskornfeld, L.: Thin Solid Films 458 (2004) 227.

Búc, D., Hotový, I., Haščík, Š., Červeň, I., : Reactive unbalanced magnetron sputtering of AlN thin films Vacuum 50 (1998) 121.

1. Cheng, C.-C.: Proc. SPIE 4234 (2001) 328.
2. Kao, K.S.: IEEE Trans. Ultrason. Ferr. 49 (2002) 345.
3. Wu, H.S.: J. Phys. Chemistry A 107 (2003) 204.
4. Figueroa, U.: Thin Solid Films 469-70 (2004) 295.
5. Guo, L.: Applied Surface Sci 242 (2005) 88.
6. Guo, L.: Inter. J. Quantum Chem. 103 (2005) 291.
7. Guo, L.: Inter. J. Quantum Chem. 106 (2006) 1250.
8. Figueroa, U.: Surface Engn. 22 (2006) 109.
9. Guo, L.: Inter. J. Quantum Chemistry 107 (2007) 1624.
10. Nie, X.: Nanomater. 9 (2019) 1420.
11. Li, J.: JOM 74 (2022) 3069.

Hotový, I., Huran, J., Haščík, Š., Lalinský, T., : Reactively sputtered NbN Schottky contacts on GaAs and their thermal stability Vacuum 50 (1998) 403.

*    1. Venger, E.F.: Mežfaznyje vzaimodeistvija i mechanizmy degradacii v strukturach metall-InP i metall-GaAs. Kyjev: Nac. Akad. Nauk Ukrajiny 1999.
2. Dmitruk, N.L.: Applied Surface Sci 166 (2000) 520.
3. Dmitruk, N.L.: Surface Sci 482 (2001) 928.
4. Bendavid, A.: Surface Coatings Technol. 163 (2003) 347.

Haščík, Š., Lalinský, T., Kuzmík, J., Porges, M., Mozolová, Ž., : Fabrication of thin GaAs cantilever beams for power sensor microsystem by RIE Vacuum 47 (1996) 1215-1217.

*    1. Jakovenko, J.: MME 2001. Cork 2001. P. 225.
2. Oesterschulze, E.: Adv. Image Elect. Phys. 118 (2001) 129.
#    3. Jakovenko, J.: WSEAS Trans Electr. 2 (2005) 85.
4. Hu, J.: ISTM/2007: 7th Inter. Symp. Test Measurement. Conf. Proc. 2007. P. 5014.
5. Xue, C.Y.: 2008 3rd IEEE Inter. Conf. Nano/Micro Engn. Molecular Systems 2008. P. 586.
#    6. Tian, T.: Chinese J. Sensors Actuators 21 (2008) 611.
*    7. Husak, M.: Mikrosenzory a mikroaktuátory. Praha: Academia 2008. 544 s.
8. Lee, J.W: Thin Solid Films 518 (2010) 6488.
#   9. Wang, D.-B.: Guangxue Jingmi Gongcheng/Optics Precision Engn. 19 (2011) 110.

Lalinský, T., Kuzmík, J., Porges, M., Haščík, Š., Mozolová, Ž., Grno, L., : Monolithic GaAs MESFET power sensor microsystem Electron. Lett. 31 (1995) 1914.

*    1. Sugiyama, Y.: Sensors. In: Properties of Gallium Arsenide. IEE, INSPEC 1996. Chapt. 22.1.
*    2. Jakovenko, J.: MME 2001. Cork 2001. P. 225.
3. Dehe, A.: IEEE MTT-S Inter. Microwave Symp. Digest (2002) 1829.
4. Pantazis, A. J.: Micromech. Microengn. 15 (2005) S53.
#    5. Jakovenko, J.: WSEAS Trans Electr. 2 (2005) 85.
#    6. Jakovenko, J.: WSEAS Trans Electr. 3 (2006) 156.
7. Hu, J.: Sensor Lett. 6 (2008) 193.
*    8. Dhamarasu, N.: In: Comprehensive Microsystems. Elsevier 2008. ISBN: 978-0-444-52190-3. Vol. 1. P. 25-51.
*    9. Husak, M.: Mikrosenzory a mikroaktuátory. Praha: Academia 2008. 544 s.
10. Wang, D.B.: J. Micromech. Microengn. 19 (2009) 125012.
11. Li, Q.Z.: Chinese Phys. B 19 (2010) 047310.
12. Tan, Z.X.: Chinese Phys. Lett. 27 (2010) 088505.
13. Xue, C.Y.: IEEE Sensors J. 11 (2011) 384.
14. Wang, D.B.: Electron. Lett. 47 (2011) 41.
15. Wang, D.-B.: Electronics Lett. 47 (2011) 875.
16. Wang, D.B.: Electron. Lett. 48 (2012) 102-U1207.

Wöhl,  G.  and  HaščíkŠ.:  Characterization  of  a trench etching process using CBrF3 and optimal emission spectroscopy of the plasma, Crystal Res. and Techn. 26 (1991) 717.

1. Miakonkikh, A.: Vacuum 200 (2022) 110991.

Handke, R., Haščík, Š., Huran, J., : Plasma etching of deep Si-trencheswith CBrF3 and dilutions Acta Phys. Slovaca 41 (1991) 122.

      1. Frank, W.E.: J. Electrochem. Soc. 140 (1993) 490.

Lányi, L., Haščík, Š., : Time resolved study of CBr3 and Ar RF plasmas at 15 kHz. In: 8th Symp. Chem. Reactions Elementary Process. Low Temp. Plasmas. Stará Lesná: 1990. P. 27.

    1. Wöhl, G.: Vacuum 42 (1991) 905.