Gál, N., Hrubčín, L., Šagátová, A., Vanko, G., Kováčová, E., and Zaťko, B.: High-resolution alpha-particle detector based on Schottky barrier 4H-SiC detector operated at elevated temperatures up to 500 °C, Applied Surface Sci 635 (2023) 157708.
1. Wang, Z.W.: Surface Coat. Technol. 484 (2024) 130798.
2. Bai, S.Y.: Applied Phys. Lett. 125 (2024) 061102.
3. Yan, Y.T.: Composit. B-Engn. 282 (2024) 111557.
Kočí, M., Izsák, T., Vanko, G., Sojková, M., Hrdá, J., Szabó, O., Husák, M., Végsö, K., Varga, M., and Kromka, A.: Improved gas sensing capabilities of MoS2/diamond heterostructures at room temperature, ACS Applied Mater. Interfaces 15 (2023) 34206-34214.
1. Kundu, S.: IEEE Sensors Lett. 8 (2024) 4500504.
2. Yan, B.: ACS Applied Mater. Interfaces 16 (2024) 19751.
3. Muthumalai, K.: ACS Applied Nano Mater. 7 (2024) 14164.
4. Mirzaei, A.: Nanotechnol. 35 (2024) 332002.
Hudec, B., Vanko, G., Precner, M., Dobročka, E., Seifertová, A., Fedor, J., Tóbik, J., and Fröhlich, K.: Piezoelectric thin film pressure sensor made by atomic layer deposition of 002-oriented ZnO on Si3N4 membrane. In: ASDAM 2022. Eds. J. Marek et al. IEEE 2022. ISBN 978-1-6654-6977-7. P. 199-202.
# 1. Sreeraman, R.: Intelligent Comp. Control for Engn. Business Systems, ICCEBS 2023.
Kundrata, I., Barr, M.K.S., Tymek, S., Döhler, D., Hudec, B., Brüner, P., Vanko, G., Precner, M., Yokosawa, T., Spiecker, E., Plakhotnyuk, M., Fröhlich, K., and Bachmann, J.: Additive manufacturing in atomic layer processing mode, Small Methods (2022) 2101546.
1. Chen, M.: DALTON Trans. 52 (2023) 10254.
2. Chen, Y.X.: NPJ 2D Mater. Appl. 8 (2024) 17.
3. Doi, X.: Small Sci 4 (2024) Iss. 2.
4. Cho, T.H.: Small Methods 8 (2024) Iss. 5.
5. Deng, W.: Nano Energy 128 (2024) 109861.
6. Duan, Y.Q.: Inter. J. Extreme Manufact. 6 (2024) 063001.
Izsák, T., Vanko, G., Babchenko, O., Vincze, A., Vojs, M., Zaťko, B., and Kromka, A.: Influence of SiON interlayer on the diamond/GaN heterostructures studied by Raman and SIMS measurements, Mater. Sci Engn. B 273 (2021) 115434.
1. Ku, Y.: Carbon Energy 6 (2024) Iss. 7.
2. Hao, Z.H.: Carbon 229 (2024) 119491.
Rýger, I., Lobotka, P., Steiger, A., Chromik, Š., Lalinský, T., Raida, Z., Pítra, K., Zehetner, J., Španková, M., Gaži, Š., Sojková, M., and Vanko, G.: Uncooled antenna-coupled microbolometer for detection of terahertz radiation, J. Infrared, Millimet., Terahertz Waves 42 (2021) 462–478.
1. Yu, X.: Applied Surface Sci 570 (2021) 151221.
2. Chu, K.L.: J. Alloys Comp. 902 (2022) 163691.
3. Vera-Reveles, G.: Electronics 11 (2022) 1665.
4. Aji, A.P.: Sensors 22 (2022) 5107.
5. Aji, A.P.: IEEE Access 11 (2023) 29323.
6. Nikiforova, P.: Photonics 11 (2024) 42.
7. Lu, G.X.: Nanotechnol. 35 (2024) 352002.
Sojková, M., Šiffalovič, P., Babchenko, O., Vanko, G., Dobročka, E., Hagara, J., Mrkývková, N., Majková, E., Ižák, T., Kromka, A., and Hulman, M.: Carbide-free one-zone sulfurization method grows thin MoS2 layers on polycrystalline CVD diamond, Sci Rep. 9 (2019) 2001.
1. Ou, N. C.: Organometall. 39 (2020) 956.
2. Mouloua, D.: Materials 14 (2021) 3283.
3. Goel, N.: Nanotechnol. 32 (2021) 375711.
4. Bhowmik, S.: I SCI 25 (2022) 103832.
5. Zhang, Z.: Crystals 13 (2023) 1034.
6. Raveena, J.: J. Mater. Sci-Mater. Electron. 34 (2023) 1164.
7. Hazdra, P.: Phys. Status Solidi A 220 (2023) Iss. 23.
8. Zeng, S.S.: Adv. Optic. Mater. 11 (2023) Iss. 15.
9. Zhang, C.L.: J. Computat. Methods Sci Engn. 23 (2023) 2595.
Zehetner, J., Kasemann, S., Vanko, G., and Babchenko, O.: Black titanium dioxide in situ generated on femtosecond laser induced periodic surface structures. In: ASDAM 2018. Eds. J. Breza et al. IEEE 2018. ISBN 978-1-5386-7488-8. P. 203-206.
1. Qiao, M.: Zhongguo Jiguang/Chinese J. Lasers 49 (2022) 2200002.
Osvald, J., Lalinský, T., and Vanko, G.: High temperature current transport in gate oxides based (GaN)/AlGaN/GaN Schottky diodes, Applied Surface Sci 461 (2018) 206.
1. Sun, S.: Mater. Sci Semicond. Process. 114 (2020) 105084.
2. Turut, A.: Turkish J. Phys. 44 (2020) 302.
3. Hou, C.: Applied Phys. Lett. 117 (2020) 203502.
4. Ozdemir, M.C.: Mater. Sci Semicond. Process. 125 (2021) 105629.
5. Turut, A.: Turkish J. Phys. 45 (2021) 268.
# 6. Sreejith, S.: Emerging Low-Power Semiconductor Devices. CRC Press 2022, pp. 127-152. ISBN 978-100-324-077-8.
7. Kumar, A.: Micro Nanostruct. 183 (2023) 207665.
Babchenko, O., Vanko, G., Gerboc, M., Ižák, T., Vojs, M., Lalinský, T., and Kromka, A.: Study on electronic properties of diamond/SiNx-coated AlGaN/GaN high electron mobility transistors operating up to 500 °C, Diamond Related Mater. 89 (2018) 266-272.
1. Siddique, A.: ACS Applied Electron. Mater. 1 (2019) 1387.
2. Zhu, T.: Semicond. Sci Technol. 35 (2020) 055006.
3. Tijent, F.Z.: ECS J. Solid State Sci Technol. 10 (2021) 074003.
4. Sobaszek, M.: Materials 14 (2021) 6328.
5. Zheng, Y.T.: Ceram. Inter. 48 (2022) 36441.
6. Abdullah, M.F.: Microelectron. Engn. 273 (2023) 111958.
7. Wang, Y.N.: Crystals 13 (2023) 500.
8. Yang, C.: Inter. J. Heat Mass Transfer 214 (2023) 124433.
9. Hao, Z.H.: Carbon 229 (2024) 119491.
Zehetner, J., Vanko, G., Dzuba, J., and Lalinský, T.: Femtosecond laser processing of membranes for sensor devices on different bulk materials, Adv. Electr. Electron. Engn. 15 (2017) 561-568.
1. Ding, H.J.: Adv. Electr. Electron. Engn. 22 (2022) 6502169.
Osvald, J., Vanko, G., Chow, L., Chen, N.C., and Chang, L.B.: Transition voltage of AlGaN/GaN heterostructure MSM varactor with two-dimensional electron gas, Microelectron. Reliab. 78 (2017) 243–248.
1. Hsieh, Y.L.: Microelectron. Reliab. 142 (2023) 114905.
Lalinský, T., Dzuba, J., Vanko, G., Kutiš, V., Paulech, J., Gálik, G., Držík, M., Chromik, Š., and Lobotka, P.: Thermo-mechanical analysis of uncooled La0.67Sr0.33MnO3 microbolometer made on circular SOI membrane, Sensors Actuators A 265 (2017) 321–328.
1. Yan, F.: Thin Solid Films 698 (2020) 137872.
Dubecký, F., Kindl, D., Hubík, P., Mičušík, M., Dubecký, M., Boháček, P., Vanko, G., Gombia, E., Nečas, V., and Mudroň, J.: A comparative study of Mg and Pt contacts on semi-insulating GaAs: electrical and XPS characterization, Applied Surface Sci 395 (2017) 131-135.
1. Xiong, T.: Applied Surface Sci A427 (2018) 1107.
2. Zhou, Y.: Metals 9 (2019) 311.
3. Niu, Q.: Dalton Trans. 49 (2020) 11120.
4. Zhou, L.: J. Water Process Engn. 36 (2020) 101168.
5. Bendahmane, B.: Sensors 20 (2020) 2158.
6. Li, R.: Energy Storage Mater. 29 (2020) 223.
7. Aldawsari, A.M.: J. Alloys Comp. 857 (2021) 157551.
8. Yu, X.: Catalysts 11 (2021) 232.
9. Zhang, S.S.: ACS Omega 6 (2021) 25506.
10. Guo, S.: Vacuum 197 (2022) 110792.
11. Predoi, D.: Coatings 12 (2022) 702.
12. Hwang, Y.Y.: Energy Storage Mater. 51 (2022) 108.
13. Afzal, S.: Applied Surface Sci 600 (2022) 154026.
14. Ye, Y.S.: J. Mater. Chem. A 11 (2023) 9112.
15. Yang, Y.X.: IEEE Trans. Electron Dev. 70 (2023) 4604.
16. Islam, A.: Energy Conv. Management 292 (2023) 117435.
Babchenko, O., Dzuba, J., Lalinský, T., Vojs, M., Vincze, A., Ižák, T., and Vanko, G.: Stability of AlGaN/GaN heterostructures after hydrogen plasma treatment, Applied Surface Sci 395 (2017) 92-97.
1. Mishra, M.: Applied Surface Sci 407 (2017) 255.
2. Huang, H.: J. Phys. D 51(2018) 345102.
3. Lee, M.-L.: Physica E 124 (2020) 114367.
4. Mimila-Arroyo, J.: Mater. Sci Engn. B 290 (2023) 116279.
5. Wang, Y.N.: Crystals 13 (2023) 500.
6. Zhou, B.: Micromachines 15 (2024) 611.
7. Hao, Z.H.: Carbon 229 (2024) 119491.
Zehetner, J., Kraus, S., Lucki, M., Vanko, G., Dzuba, J., and Lalinský, T.: Manufacturing of membranes by laser ablation in SiC, sapphire, glass and ceramic for GaN/ferroelectric thin film MEMS and pressure sensors, Microsyst. Technol. 22 (2016) 1883-1892.
1. Dowling, K.M.: J. Microelectromech. Systems 26 (2017) 135.
2. Chauhan, A.: Mater. Today Comm. 12 (2017) 146.
3. Li, J.: Ceramics Inter. 44 (2018) 3107.
4. Zhao, Y.: Sensors Actuators A 309 (2020) 112017.
5. Mastellone, M.: Materials 15 (2022) 1378.
6. Hou, Y.S.: Integrat. Ferroelectr. 229 (2022) 229.
7. Li, Z.: Adv. Mater. Sci Engn. 2022 (2022) 5997536.
# 8. Chen, R.: Guangxue Jingmi Gongcheng/Optics Precision Engn. 25 (2022) 702.
9. Wang, Q.J.: Micromachines 15 (2024) 639.
10. Jiang, K.R.: Mater. Sci Semicond. Process. 180 (2024) 108559.
Lalinský, T., Vanko, G., Dzuba, J., Kutiš, V., Gálik, G., Paulech, J., Držík, M., Chromik, Š., and Lobotka, P.: Thermo-mechanical analysis of uncooled La0.67Sr0,33MnO3 microbolometer made on circular SOI membrane, Procedia Engn. 168 (2016) 733-736.
1. Kim, CH.: Trans. Electr. Electron. Mater. 23 (2022) 19.
Zehetner, J., Vanko, G., Dzuba, J., and Lalinský, T.: Nanostructuring of bulk Si and SiC substrates by femtosecond laser ablation for membrane fabrication and surgace functionalization. In: ASDAM 2016. Eds. Š. Haščík et al. IEEE 2016. ISBN 978-1-5090-3081-1. P. 223-226.
1. Ding, H.J.: Adv. Mater. Sci Engn. 2022 (2022) 6502169.
Ižák, T., Jirásek, V., Vanko, G., Dzuba, J., and Kromka, A.: Temperature-dependent stress in diamond-coatewd AlGaN/GaN heterostructures, Mater. & Design 106 (2016) 305-312.
1. Sebastiani, M.: Mater. & Design 118 (2017) 204.
2. Li, M.: Mater. Design 180 (2019) UNSP 107985.
3. Wang, Y.N.: Crystals 13 (2023) 500.
Dzuba, J., Vanko, G., Babchenko, O., Lalinský, T., Horvát, F., Szarvas, M., Kováč, T., and Hučko, B.: Strain induced response of AlGaN/GaN high electron mobility transistor located on cantilever and membrane. In: ASDAM 2016. Eds. Š. Haščík et al. IEEE 2016. ISBN 978-1-5090-3081-1. P. 227-230.
1. Qiu, W.: Applied Sci-Basel 8 (2018) 2333.
2. Wang, L.: EPL 141 (2023) 40002.
Dzuba, J., Vanko, G., Vojs, M., Rýger, I., Ižák, T., Jirásek, V., Kutiš, V., and Lalinský, T.: Finite element analysis of AlGaN/GaN micro-diaphragms with diamond, Proc. SPIE 9517 (2015) 95171I.
1. Zhao, Y.: Sensors Actuators A 309 (2020) 112017.
Vanko, G., Dzuba, J., Rýger, I., Vallo, M., and Lalinský, T.: MEMS pressure sensor with an AlGaN/GaN based high electron mobility transistor. In: NSTI: Advanced Materials – TechConnect Briefs 2015. Eds. B. Romanowicz, M. Laudon. Taylor and Francis: 2015. ISBN: 978-149874730-1. P. 290-293.
1. Wang, R.R.: Micromachines 12 (2021) 1413.
Ižák, T., Babchenko, O., Jirásek, V., Vanko, G., Vojs, M., and Kromka, A.: Influence of diamond CVD growth conditions and interlayer material on diamond/GaN interface, Mater. Sci Forum 821-823 (2015) 982-985.
# 1. Francis, D.: Thermal Management of Gallium Nitride Electronics. Elsevier 2022, pp. 295-231. ISBN: 978-0-12-821084-0.
2. Wang, Y., Crystals 13 (2023) 500.
Zehetner, J., Vanko, G., Dzuba, J., Rýger, I., Lalinský, T., Benkler, M., and Lucki, M.: Laser ablation for membrane processing of AlGaN/GaN- and micro structured ferroelectric thin film MEMS and SiC pressure sensors for extreme conditions, Proc. SPIE 9517 (2015) 951721.
1. Zhao, Y.: Sensors Actuators A 309 (2020) 112017.
2. Wang, L.: Ceramics Inter. 47 (2021) 6397.
3. Wang, Q.J.: Micromachines 15 (2024) 639.
4. Jiang, K.R.: Mater. Sci Semicond. Process. 180 (2024) 108559.
Dzuba, J., Vanko, G., Držík, M., Rýger, I., Vallo, M., Kutiš, V., Haško, D., Choleva, P., and Lalinský, T.: Stress investigation of the AlGaN/GaN micromachined circular diaphragms of a pressure sensor, J. Micromech. Microengn. 25 (2015) 015001.
1. Lee, S.: Nature Comm. 10 (2019) 2468.
2. Tan, X.: Microsystem Techn.-Micro- Nanosystems-Inf. Storage Process. Systems 26 (2020) SI3189.
3. Yang, R.: ACS Applied Mater. Interfac. 14 (2022) 47089.
4. Luo, X.: Measurement Sci Technol. 35 (2024) 075111.
Ižák, T., Vanko, G., Babchenko, O., Potocký, Š., Marton, M., Vojs, M., Choleva, P., and Kromka, A.: Diamond-coated three-dimensional GaN micromembranes: Effect of nucleation and deposition techniques, Phys. Status Solidi B 252 (2015) 2585–2590.
1. Raju, A.: Crystal Growth Design 19 (2019) 672.
2. Sznajder, M.: Materials 14 (2021) 6532.
3. Hao, Z.H.: Carbon 229 (2024) 119491.
Dzuba, J., Vanko, G., Držík, M., Rýger, I., Kutiš, V., Zehetner, J., and Lalinský, T.: AlGaN/GaN diaphragm-based pressure sensor with direct high performance piezoelectric transduction mechanism, Applied Phys. Lett. 107 (2015) 122102.
# 1. Zhu, Y.-X.: Faguang Xuebao/Chinese J. Lumin. 37 (2016) 1545.
2. Chromik, S.: Applied Surface Sci 395 (2017) 232.
3. Ghouila-Houri, C.: Applied Phys. Lett. 111 (2017) 113502.
4. Wang, D.F.: Applied Phys. Lett. 111 (2017) 083502.
5. Gajula, D.: Micromachines 9 (2018) 207.
6. Ma, Y.J.: Applied Phys. Lett. 112 (2018) 173505.
7. Wang, A.: AIP Adv. 8 (2018) 035318.
8. Tong, W.: Comput. Mater. Sci 143 (2018) 391.
9. Park, S.-J.: Adv. Mater. Technol. 3 (2018) 1700158.
10. Cheng, Q.: 14th IEEE Inter. Conf. Solid-State Integrated Circuit Technol. (ICSICT) 2018, pp. 416-418.
11. Tan, X.: AIP Adv. 8 (2018) 085202.
12. Hao, L.: Sensors Actuators B 283 (2019) 740.
13. Hsu, A.-J.: Applied Surface Sci 470 (2019) 19.
14. Wang, A.: Semicond. Sci Technol. 34 (2019) 115022.
15. Tan, X.: Microelectr. Engn. 219 (2020) 111143.
16. Tan, X.: Microsystem Techn.-Micro- Nanosystems-Inf. Storage Process. Systems 26 (2020) SI3189.
17. Pham, T.-A.: Adv. Sci 7 (2020) 2001294.
18. van Erp, R.: Nature 585 (2020) 211-+.
19. Kumar, A.: IEEE Trans. Semicond. Manufact. 33 (2020) 606.
20. Sun, J.: Sensors Actuators A 314 (2020) 112217.
21. Wang, A.: ECS J. Solid State Sci Technol. 10 (2021) 037007.
22. Guo, X.G.: J. Micromech. Microengn. 31 (2021) 093002.
23. Wang, R.R.: Micromachines 12 (2021) 1413.
24. Nguyen, H.-Q.: ACS Applied Electron. Mater. 4 (2022) 2648.
# 25. Belwanshi, V.: IETE J. Res. 68 (2022) 667.
# 26. Jiang, J.: ICEPT 2022.
27. Jiang, J.: Materials 16 (2023) 1484.
28. Kumar, A.: Micro Nanostruct. 179 (2023) 207592.
29. Takeda, H.: Japan. J. Applied Phys. 62 (2023) SM1027.
30. Gujrati, R.: Applied Phys. Lett. 124 (2024) 104102.
Rýger, I., Vanko, G., Lalinský, T., Haščík, Š., Benčurová, A., Nemec, P., Andok, R., and Tomáška, M.: GaN/SiC based surface acoustic wave structures for hydrogen sensors with enhanced sensitivity, Sensors Actuators A 227 (2015) 55-62.
1. Drmosh, Q.A.: Ceramics Inter. 42 (2016) 12378.
2. Ayesh, A.I.: J. Alloys Compounds 689 (2016) 1.
3. Yun, D.-J.: IEEE Trans. Electron Devices 64 (2017) SI2350.
4. Wang, W.: IEEE Inter. Ultrasonics Symp. 2018.
5. Wang, W.: Sensors Actuators B 287 (2019) 157.
6. Mokhov, D.V.: Semiconductors 53 (2019) 1717.
7. Jaafar, M. M.: Applied Phys. A 125 (2019) 804.
8. Upadhyay, K.T.: Mater. Sci Engn. B 263 (2021) 114849.
9. Ghosh, S.: IEEE Trans. Electron Dev. 68 (2021) 4637.
10. Ghosh, S.: IEEE Trans.Nanotechnol. 20 (2021) 303.
11. Ghosh, S.: IEEE Trans. Nanotechnol. 21 (2022) 655.
12. Zhang, J.X.: Nanotechnol. 34 (2023) 155501.
13. Ghosh, S.: IEEE INDICON 2022.
14. Salimian, A.: Inter. J. Hydrogen Energy 50 (2024) 1157.
15. Liu, H.Y.: Nanomater. 14 (2024) 187.
16. Cui, B.L.: Sensors Actuators Rep. 7 (2024) 100197.
17. Li, ZR.: Sensors Actuators B 417 (2024) 136172.
Dzuba, J., Vanko, G., Rýger, I., Vallo, M., Kutiš, V., Lalinský, T., : Influence of temperature on the sensitivity of the AlGaN/GaN C HEMT based piezoelectric pressure sensor In: ASDAM 2014. Eds. J. Breza et al. IEEE 2014. ISBN 978-1-4799-5474-2. P. 5-8.
1. Yalamarthy, A.S.: Semicond. Sci Technol. 31 (2016) 035024.
2. Upadhyay, K.T.: Mater. Sci Engn. B 263 (2021) 114849.
Rýger, I., Vanko, G., Lalinský, T., Dzuba, J., Vallo, M., Kunzo, P., and Vávra, I.: Enhanced sensitivity of Pt/NiO gate based AlGaN/GaN C-HEMT hydrogen sensor, Key Engn. Mater. 605 (2014) 491-494.
1. Ajayan, J.: Measurement 186 (2021) 110100.
Dzuba, J., Držík, M., Vanko, G., Rýger, I., Vallo, M., Kutiš, V., and Lalinský, T.: Modal analysis of Gallium Nitride membrane for pressure sensing device, Key Engn. Mater. 605 (2014) 404-407.
1. Zhang, M.: Shock Vibration (2018) 4396520.
Chromik, Š., Štrbik, V., Dobročka, E., Roch, T., Rosová, A., Španková, M., Lalinský, T., Vanko, G., Lobotka, P., Ralbovský, M., and Choleva, P.: LSMO thin films with high metal-insulator transition temperature on buffered SOI substrates for uncooled microbolometers, Applied Surface Sci 312 (2014) 30-33.
1. Zhao, S.: Adv. Applied Ceram. 116 (2017) 180.
2. Jiang, J.: Ceramics Inter. 44 (2018) 3915.
3. Galik, G.: AIP Conf. Proc. 1996 (2018) 020011.
4. Ji, F.: Mater. Res. Express 6 (2019) 086326.
5. Dong, G.: Ceramics Inter. 45 (2019) 12162.
6. Shi, Q.: Adv. Electron. Mater. 5 (2019) 1900020.
7. Liu, S.: J. Micromech. Microengn. 29 (2019) 065008.
8. Yu, X.: J. Sol-Gel Sci. Technol. 90 (2019) 221.
9. Liu, Y.: Ceramics Inter. A 45 (2019) 24070.
10. Li, H.: J. Alloys Comp. 810 (2019) UNSP 151908.
11. Pu, X.: J. Material. Sci-Mater. Electr. 30 (2019) 19862.
12. Li, H.: J. Alloys Comp. 847 (2020) 156417.
13. Chu, K.: J. Material. Sci-Mater. Electr. 31 (2020) 12389.
14. Chu, K.: Ceramics Inter. 46 (2020) 7568.
15. Liu, Y.: Ceramics Inter. 47 (2021) 7674.
16. Guan, X.L.: Ceramics Inter. 47 (2021) 18931.
17. Guan, X.: J. Alloys Comp. 876 (2021) 160173.
18. Yang, S.: Ceramics Inter. 47 (2021) 29631.
19. Yu, Z.: Ceramics Inter. 47 (2021) 33202.
20. Yu, X.: Applied Surface Sci 570 (2021) 151221.
21. Guan, X.: J. Alloys Comp. 895 (2022) 162555.
22. Chaluvadi, S.K.: Applied Surface Sci 579 (2022) 152095.
23. Guan, X.: Applied Phys. A 128 (2022) 362.
24. Guan, X.L.: Ceramics Inter. 48 (2022) 11094.
25. Chu, K.L.: J. Alloys Comp. 902 (2022) 163691.
26. Guan, X.L.: Applied Phys. Lett. 121 (2022) 202203.
27. Wu, K.K.: Ceramics Inter. 49 (2023) 1344.
28. Yan, Y.X.: Ceramics Inter. 49 (2023) 669.
29. Sarkar, N.: Electron. Mater. Lett. 19 (2023) 384.
30. Gu, X.: Ceramics Inter. 49 (2023) A22952.
31. Chatterjee, S.: J. Applied Phys. 134 (2023) 064301.
# 32. Kang, J.G.: New Physics: Sae Mulli 73 (2023) 1-6.
Rýger, I., Vanko, G., Lalinský, T., Kunzo, P., Vallo, M., Vávra, I., and Plecenik, T.: Pt/NiO ring gate based Schottky diode hydrogen sensors with enhanced sensitivity and thermal stability, Sensors Actuators B 202 (2014) 1-8.
1. Radzali, R.: Sensors Actuators B 213 (2015) 276.
2. Karaduman, I.: Physica Scripta 90 (2015) 055802.
3. Yuan, Z.: J. Electron. Mater. 44 (2015) 1187.
4. Xia, X.: Sensors Actuators B 234 (2016) 192.
5. Soni, S.: AIP Conf. Proc. 1731 (2016) UNSP 080079.
6. Cindemir, U.: Sensors Actuators B 242 (2017) 132.
7. Orak, I.: Pamukkale Univ. J. Engn. SCI 23 (2017) 536.
8. Rajan, L.: IEEE Sensors J. 19 (2019) 3232.
9. Lee, Nam H.: Sensors 19 (2019) 3050.
10. Taib, A.K.: IEEE Inter. Conf. Semicond. Electron. – ICSE 2022, p. 9.
11. Taib, A.K.: Plos One 18 (2023) 0282370.
12. Abdullah, H.: J. Electron. Mater. 52 (2023) 8191.
Ižák, T., Babchenko, O., Jirásek, V., Vanko, G., Vallo, M., Vojs, M., and Kromka, A.: Selective area deposition of diamond films on AlGaN/GaN heterostructures, Phys. Status Solidi B 251 (2014) 2574-2580.
1. Shahin, D.I.: Diamond Related Mater. 59 (2015) 116.
2. Raju, A.: Crystal Growth Design 19 (2019) 672.
3. Mandal, S.: RSC Adv. 11 (2021) 10159.
# 4. Piner, E.: Thermal Management of Gallium Nitride Electronics. Elsevier 2022, pp. 333-358. ISBN: 978-0-12-821084-0.
5. Wang, Y.N.: Crystals 13 (2023) 500.
Rýger, I., Vanko, G., Lalinský, T., Haščík, Š., Nemec, P., Benčurová, A., and Tomáška, M.: The GaN/SiC heterostructure-based hydrogen SAW sensor operating in GHz range, Procedia Engn. 87 (2014) 260-263.
* 1. Paszkiewicz, R.: Proc. ADEPT. Žilina: Univ. Žilina 2017. ISBN 978-80-554-1342-6. P. 64.
2. Upadhyay, K.T.: Mater. Sci Engn. B 263 (2021) 114849.
3. Feng, Y.: IET Circuits Dev. Systems 16 (2022) 483.
4. Kim, S.: Adv. Mater. Technol. 7 (2022) 2200180.
Vanko, G., Hudek, P., Dzuba, J., Choleva, P., Kutiš, V., Vallo, M., Rýger, I., Lalinský, T., : Bulk micromachining of SiC substrate for MEMS sensor applications. Microelectron. Engn. 110 (2013) 260-264.
1. Olhero, S. M.: Mater. Research Bull. 60 (2014) 830.
2. Preusch, F.: Micromachines 5 (2014) 1051.
3. Leclaire, P.: Semicond. Sci Technol. 29 (2014) 115018.
4. Frischmuth, T.: Procedia Engn. 87 (2014) 128.
5. Savriama, G.: J. Laser Appl. 27 (2015) 032009.
# 6. Asadi, E.: Proc. 15th Inter. Conf. European Soc Precision Engn. Nanotechnol. – EUSPEN 2015. P. 41.
7. Kubiak, A.: J. Phys. Conf. Ser. 709 (2016) 012005.
8. Mu, F.: ECS J. Solid State Sci Technol. 5 (2016) P451.
# 9. Denkena, B.: EUSPEN 2016.
10. Kaushal, A.: J. European Ceramic Soc 37 (2017) 3079.
11. Wang, C.: ECS J. Solid State Sci Technol. 6 (2017) P105.
* 12. Oliveira, E.S.: Master’s Thesis. Univ. de São Paulo 2017.
13. Shi, Y.: Sensors Actuators A 276 (2018) 196.
14. Li, J.: Ceram. Inter. 44 (2018) 3107.
15. Aono, Y.: Precision Engn.-J. Inter. Soc Precision Engn. Nanotechnol. 54 (2018) 198.
# 16. Mu, F.: In Inter. Conf. on Electron. Packaging and iMAPS All Asia Conf. – ICEP-IAAC 2018, pp. 558-561.
17. Wu, C.: Ceramics Inter. 46 (2020) 17896.
18. Kumar, A.: J. Nuclear Mater. 540 (2020) 152351.
# 19. Zhao, R.: Proc. IEEE Inter. Conf. Artif. Intellig. Computer Appl. – ICAICA 2020, no. 9182392, pp. 814-818.
20. Wang, L.: Ceramics Inter. 47 (2021) 6397.
21. Chen, Z.J.: Inter. J.Mechan. Sci 195 (2021) 106239.
22. Zhan, S.D.: J. European Ceramic Soc 41 (2021) 5075.
# 23. Wang, H.: Bandaoti Guangdian/Semicond. Optoelectron. (2021) 458-463 and 478.
# 24. Hajare, R.: Mater. Today: Proc. 49 (2021) 720.
25. Zhan, S.D.: Precision Engn.-J. Inter. Soc Precision Engn. Nanotechnol. 74 (2022) 403.
26. Wang, L.K.: Ceramics Inter. 48 (2022) 12359.
* 27. Cao, Z.: J. Internet Things 3 (2021) 11.
# 28. Wang, H.J.: Proc. SPIE 12351 (2022) 123510Z.
29. Chen, J.J.: Mater. Sci Semicond. Process. 165 (2023) 107651.
30. Zhai, Y.X.: Mater. Sci Semicond. Process. 173 (2024) 108137.
Le Boulbar, E., Edwards, M., Vittoz, S., Vanko, G., Brinkfeldt, K., Rufer, L., Johander, P., Lalinský, T., Bowen, C., and Allsopp, D.: Effect of bias conditions on pressure sensors based on AlGaN/GaN high electron mobility transistor, Sensors Actuators A 194 (2013) 247-251.
1. Munusami, R.: Superlatt. Microstr. 64 (2013) 388.
2. Koeck, H.: Proc. SPIE 9113 (2014) 91130D.
3. Yakuphanoglu, F.: J. Alloys Compounds 650 (2015) 671.
4. Maurya, D.: Adv. Mater. for Clean Energy (2015) 143.
5. Yalamarthy, A.S .: Semicond. Sci Technol. 31 (2016) 035024.
# 6. Senesky, D.G.: In Semiconductor-Based Sensors. World Sci Publ. 2016. ISBN 978-981314673-0. P. 395-433.
7. Dowling, K.M.: Microelectron. Engn. 173 (2017) 54.
8. Andrews, J.B.: IEEE Sensors 2017. P. 25.
9. Chapin, C.A.: Sensors Actuators A 263 (2017) 216.
10. Gajula, D.: Micromachines 9 (2018) 207.
11. Wang, A.: AIP Adv. 8 (2018) 035318.
12. Wang, A.: Mater. Res. Express 5 (2018) 025903.
13. Luo, J.: J. Semicond.39 (2018) 124007.
14. Andrews, J.B.: IEEE Sensors J. 18 (2018) 7875.
15. Tan, X.: AIP Adv. 8 (2018) 085202.
16. Wang, A.: Semicond. Sci Technol. 34 (2019) 115022.
# 17. Chapin, C.A.: Solid-State Sensors, Actuators and Microsystems Workshop 2018, pp. 238-239.
18. Tan, X.: Microelectr. Engn. 219 (2020) 111143.
19. Tan, X.: Microsystem Techn.-Micro- Nanosystems-Inf. Storage Process. Systems 26 (2020) SI3189.
20. Oh, H.: Sensors 20 (2020) 3872.
21. Sun, J.: Sensors Actuators A 314 (2020) 112217.
22. Upadhyay, K.T.: Mater. Sci Engn. B 263 (2021) 114849.
23. Wang, A.: ECS J. Solid State Sci Technol. 10 (2021) 037007.
24. Nguyen, H.Q.: Applied Physics Lett. 118 (2021) 242104.
25. Moser, M.:IEEE Sensors J. 21 (2021) 20176.
26. Moser, M.:IEEE Sensors J. 21 (2021) 20165.
27. Wang, R.R.: Micromachines 12 (2021) 1413.
# 28. Moser, M.: Proc. MikroSystemTechnik Kongress 2021, pp. 250.
29. Parinov, I.A.: Symmetry-Basel 14 (2022) 765.
30. Al-Mamun, N.S.: Microelectron. Engn. 262 (2022) 111836.
31. Nallusamy, N.: IEEE Trans. Dev. Mater. Reliab. 22 (2022) 424.
32. Blanton, E.W.: Applied Phys. Lett. 122 (2023) 173502.
33. Neumann, P.L.: Micro Nano Engn. 19 (2023) 100198.
Vallo, M., Lalinský, T., Dobročka, E., Vanko, G., Vincze, A., and Rýger, I.: Impact of Ir gate interfacial oxide layers on performance of AlGaN/GaN HEMT,. Applied Surface Sci 267 (2013) 159-163.
1. Lin, R.-M.: Japan. J. Applied Phys. 52 (2013) 111002.
2. Huang, H.: Solid-State Electr. 114 (2015) 148.
Lalinský, T., Vallo, M., Vanko, G., Dobročka, E., Vincze, A., Osvald, J., Rýger, I., Dzuba, J., : Iridium oxides based gate interface of AlGaN/GaN high electron mobility transistors formed by high temperature oxidation. Applied Surface Sci 283 (2013) 160-167.
1. Jung, S.M.: Semicond. Sci Technol. 30 (2015) 075012.
2. Eisner, S.R.: IEEE Aerospace Conf. Proc. – AEROCONF 2021.
3. Eisner, S.R.: Applied Phys. Lett. 123 (2023) 152101.
Vanko, G., Zehenter, J., Choleva, P., Lalinský, T., and Hudek, P.: Laser ablation: A supporting technique to bulk micromachining of SiC. In: ASDAM 2012. Eds. Š. Haščík, J. Osvald. Piscataway: IEEE 2012. ISBN 978-1-4673-1195-3. P. 259-262.
# 1. Zhang, H..: Zhongguo Jiguang/Chinese J. Lasers 44 (2017) 0102017.
2. Martychowiec, A.: Przeglad Elektrotechn. 95 (2019) 154.
# 3. Wang, H.: Bandaoti Guangdian/Semicond. Optoelectron. (2021) 458-463 and 478.
Dubecký, F., Gombia, E., Ferrari, C., Zaťko, B., Vanko, G., Baldini, M., Kováč, J., Baček, D., Kováč, P., Hrkút, P., and Nečas, V.: Characterization of epitaxial 4H-SiC for photon detectors. J. Instrument. 7 (2012) P09005.
1. Liu, L.-Y.: Sensors (2017) 2334.
2. Ou, H.Y.: Materials 16 (2023) 1014.
Rýger, I., Vanko, G., Kunzo, P., Lalinský, T., Vallo, M., Plecenik, A., Satrapinskyy, L., Plecenik, T., :AlGaN/GaN HEMT based hydrogen sensors with gate absorption layers formed by high temperature oxidation. Procedia Engn. 47 (2012) 518-521.
1. Halfaya, Y.: Sensors 16 (2016) Iss. 3.
2. Sharma, N.: J. Nanoelectron. Optoelectron. 11 (2016) 694.
3. Suria, A.J.: Semicond. Sci Technol. 31 (2016) 115017.
# 4. Zhu, Y.-X.: Faguang Xuebao/Chinese J. Lumin. 37 (2016) 1545.
5. Sharma, N.: IEEE Trans. Electron Dev. 67 (2020) 289.
# 6. Chen, J.: Zhenkong Kexue yu Jishu Xuebao/J. Vacuum Sci Technol. 40 (2020) 12.
7. Upadhyay, K.T.: Mater. Sci Engn. B 263 (2021) 114849.
8. Pal, P.: IEEE Sensors J. 21 (2021) 12998.
9. Ajayan, J.: Measurement 186 (2021) 110100.
# 10. Sharma, N.: Lecture Notes in Networks and Syst. 204 (2021) 13.
# 11. Gupta, Y.: VLSI and Hardware Implementations using Modern Machine Learning Methods. CRC 2022, pp. 163-179. ISBN 978-100-320-103-8
12. Bhat, A.M.: Micro Nanostruct. 176 (2023) 207528.
13. Nguyen, V.C.: Sensors 23 (2023) 3465.
14. Jiang, Y.: J. Mater. Chem. C 11 (2023) 10121.
Lalinský, T., Vanko, G., Vallo, M., Dobročka, E., Rýger, I., Vincze, A., : AlGaN/GaN high electron mobility transistors with nickel oxide based gates formed by high temperature oxidation. Applied Phys. Lett. 100 (2012) 092105.
1. Liu, H.-Y.: IEEE Trans. Electron Dev. 60 (2013) 2231.
2. Kawakami, R.: Japan. J. Applied Phys. 52 (2013) SIUNSP05EC05.
3. Binh, T.T.: Electronic Mater. Lett. 9 (2013) 705.
4. Harmatha, L.: Applied Surface Sci 312 (2014) 102.
5. Osvald, J.: Phys. Status Solidi B 252 (2015) SI996.
6. Lee, C.-S.: IEEE Trans. Electron Dev. 62 (2015) 1460.
7. Lee, C.S.: Inter. Conf. on Power Electron. Drive Systems 2015. P. 194.
8. Reddy, V. R.: RSC Adv. 6 (2016) 105761.
9. Lee, C.-S.: ECS J. Solid State Sci Technol. 5 (2017) Q284.
10. Suria, A.J.: Applied Phys. Lett. 110 (2017) 253505.
11. Huang, S.-J.: Applied Surface Sci 401 (2017) 373.
12. Lee, C.-S.: Semicond. Sci Technol. 33 (2018) 065004.
13. Gao, S.: IEEE Electron Device Lett. 40 (2019) 1921.
14. Li, G.: J. Mater. Chem. C 8 (2020) 1125.
Vanko, G., Vallo, M., Bruncko, J., Lalinský, T., : Laser ablated ZnO layers for ALGaN/GaN HEMT passivation. Vacuum 86 (2012) 672-674.
1. Eller, B.S.: J. Vacuum Sci Technol. A 31 (2013) 050807.
2. Soylu, M.: Mater. Chem. Phys. 143 (2014) 495.
3. Bao, Q.: Vacuum 101 (2014) SI184.
Lalinský, T., Hudek, P., Vanko, G., Dzuba, J., Kutiš, V., Srnánek, R., Choleva, P., Vallo, M., Držík, M., Matay, L., and Kostič, I.: Micromachined membrane structures for pressure sensors based on AlGaN/GaN circular HEMT sensing device, Microelectron. Engn. 98 (2012) 578–581.
1. Ko, S.C.: J. Micromech. Microengn. 23 (2013) 035011.
2. Wang, C.: Microelectr. Engn. 109 (2013) 24.
3. Linganiso, E.C.: Mater. Chem. Phys. 143 (2013) 367.
4. Haehnlein, B.: Phys. Status Solidi C 11 (2014) 239.
5. Al-Shibaany, Z.Y.A.: IOP Conf. Ser. 65 (2014) 012030.
# 6. Tiginyanu, I.: Turkish J. Phys. 38 (2014) 328.
# 7. Senesky, D.G.: In Semiconductor-Based Sensors. World Sci 2016, ISBN: 978-981-3146-73-0, pp. 395-433.
8. Dowling, K.M.: Microelectr. Engn. 173 (2017) 54.
9. Chapin, Caitlin A.: TRANSDUCERS 2017. P. 786.
10. Zhang, S.: Adv. Mater. Technol. 3 (2018) 1700285.
11. Gajula, D.: Micromachines 9 (2018) 207.
12. Tadjer, M.J.: IEEE J. Electron Dev. Soc 6 (2018) 922.
13. Tan, X.: AIP Adv. 8 (2018) 085202.
14. Tan, X.: Microelectr. Engn. 219 (2020) 111143.
15. Sun, J.: Sensors Actuators A 314 (2020) 112217.
* 16. Middelburg, L.M.: In Sensor Systems Simul. ISBN 978-3-030-16577-2, 2020, pp. 1-15.
17. Cuenca, J.A.: Carbon 174 (2021) 647.
18. Nguyen, H.Q.: Applied Physics Lett. 118 (2021) 242104.
19. Moser, M.:IEEE Sensors J. 21 (2021) 20176.
20. Al-Mamun, N.S.: Microelectr. Engn. 262 (2022) 111836.
21. Nguyen, H.Q.: ACS Applied Electron. Mater. 4 (2022) 2648.
22. Nallusamy, N.: Physica Status Solidi A 220 (2023) no. 7.
* 23. Moser, M.: Power Electron. Dev. Comp. 4 (2023) 1.
Edwards, M., Le Boulbar, E., Vittoz, S., Vanko, G., Brinkfeldt, K., Rufer, L., Johander, P., Lalinský, T., Bowen, C., Allsopp, D., : Pressure and temperature dependence of GaN/AlGaN HEMT based sensors on a sapphire membrane,. Phys. Status Solidi c 9 (2012) 960-963.
1. Fang, J.Y.: J. Applied Phys. 114 (2013) 204503.
2. Fang, J.-Y.: ECS Trans. 58 (2014) 3.
# 3. Senesky, D.G.: In Semiconductor-Based Sensors. World Sci Publ. 2016. ISBN 978-981314673-0. P. 395-433.
4. Dowling, K.M.: Microelectron. Engn. 173 (2017) 54.
5. Huang, Y.-S.: Optical Mater. Express 7 (2017) 320.
6. Chapin, C.A.: TRANSDUCERS 2017. P. 786.
7. Chapin, C.A.: Sensors Actuators A 263 (2017) 216.
8. Shin, S.: Sensors Actuators A 303 (2020) UNSP 111783.
9. Oh, H.: Sensors 20 (2020) 3872.
10. Moser, M.:IEEE Sensors J. 21 (2021) 20176.
11. Moser, M.:IEEE Sensors J. 21 (2021) 20165.
12. Al-Mamun, N.S.: Microelectron. Engn. 262 (2022) 111836.
Rýger, I., Vanko, G., Lalinský, T., Vallo, M., Tomáška, M., Ritomský, A., : AlGaN/GaN based SAW-HEMT devices for chemical gas sensors operating in GHz range. Procedia Engn. 25 (2011) 1101-1104.
1. Wang, X.: J. Alloys Compounds 667 (2016) 346.
2. Upadhyay, K.T.: Mater. Sci Engn. B 263 (2021) 114849.
3. Horta, I.M.: Surfaces Interfaces 40 (2023) 103023.
Vanko, G., Držík, M., Vallo, M., Lalinský, T., Kutiš, V., Stančík, S., Rýger, I., Benčurová, A., : AlGaN/GaN C-HEMT structures for dynamic stress detection. Sensors Actuators A 172 (2011) 98-102.
1. Wang, A.: IEEE Trans. Electron Dev. 60 (2013) SI3149.
2. Wang, A.: AIP Adv. 8 (2018) 035318.
3. Wang, A.: Mater. Res. Express 5 (2018) 025903.
4. Wang, A.: Semicond. Sci Technol. 34 (2019) 115022.
5. Tan, X.: Microelectr. Engn. 219 (2020) 111143.
6. Tan, X.: Microsystem Techn.-Micro- Nanosystems-Inf. Storage Process. Systems 26 (2020) SI3189.
7. Upadhyay, K.T.: Mater. Sci Engn. B 263 (2021) 114849.
8. Qing-Bin, L.: Acta Physica Sinica 72 (2023) 098104.
Lalinský, T., Vanko, G., Vincze, A., Haščík, Š., Osvald, J., Donoval, D., Tomáška, M., Kostič, I., : Effect of fluorine interface redistribution on performance of AlGaN/GaN HEMTs. Microelectr. Engn. 88 (2011) 166-169.
1. Ketteniss, N.: IEEE Electron Device Lett. 33 (2012) 519.
2. Bisi, D.: Europ. Solid-State Device Research Conf. 2013, p. 61.
3. Loghmany, A.: Solid-State Electron. 103 (2015) 162.
4. He, Y.: IEEE SSL China – IFWS 2016. P. 116.
* 5. Fornasiero, Q.: WOCSDICE EXMATEC 2021, p. 50.
6. Mauduit, C.: Microelectron. Engn. 277 (2023) 112020.
Lalinský, T., Vanko, G., Vallo, M., Držík, M., Bruncko, J., Jakovenko, J., Kutiš, V., Rýger, I., Haščík, Š., Husák, M., : Impact of ZnO gate interfacial layer on piezoelectric response of AlGaN/GaN C-HEMT based ring gate capacitor. Sensors Actuators A 172 (2011) 386-391.
1. Wang C.: Chinese Phys. Lett. 31 (2014) 128501.
Lalinský, T., Hudek, P., Vanko, G., Choleva, P., Vallo, M., Matay, L., Kostič, I., Držík, M., : Micromachined pressure sensors based on AlGaN/GaN circular HEMT sensing devices In: 37th Inter. Conf. Micro Nano Engn. – MNE 2011. Berlin 2011.
1. Ko, S.C.: J. Micromech. Microengn. 23 (2013) 035011.
Lalinský, T., Držík, M., Vanko, G., Vallo, M., Kutiš, V., Bruncko, J., Haščík, Š., Jakovenko, J., and Husák, M.:Piezoelectric response of AlGaN/GaN-based circular-HEMT structures. Microelectr. Engn. 88 (2011) 2424-2426.
1. Wang, C.: Microelectr. Engn. 109 (2013) 24.
2. Chapin, C.A.: Structural Health Monitoring 2013. P. 1621.
# 3. Senesky, D.G.: In Semiconductor-Based Sensors. World Sci Publ. 2016. ISBN 978-981314673-0. P. 395-433.
4. Tomita, S.: J. Applied Phys. 121 (2017) 235102.
5. Wang, A.: AIP Adv. 8 (2018) 035318.
6. Khan, A.B.: J. Nanoelectron. Optoel. 13 (2018) 20.
7. Luo, J.: J. Semicond.39 (2018) 124007.
8. Wang, A.: Semicond. Sci Technol. 34 (2019) 115022.
9. Sun, J.: Sensors Actuators A 314 (2020) 112217.
10. Kumari, V.: IETE Techn. Rev. 38 (2021) 294.
Osvald, J., Lalinský, T., Vanko, G., Haščík, Š., and Vincze, A.: C–V characterization of SF6 plasma treated AlGaN/GaN heterostructures, Microelectr. Engn. 87 (2010) 2208-2210.
1. Wang, R.: J. Phys. D 51 (2018) 065108.
2. Wang, R.: Phys. Rev. Applied 11 (2019) 054021.
3. Fornasiero, Q.: J. Vacuum Sci Technol. B 41 (2023) 012202.
Lalinský, T., Rýger, I., Vanko, G., Tomáška, M., Kostič, I., Haščík, Š., Vallo, M., : AlGaN/GaN based SAW-HEMT structures for chemical gas sensors, Procedia Engn. 5 (2010) 152-155.
1. Guo, Y.: RSC Adv. 5 (2015) 98724.
# 2. Caliendo, C.: In Anti-Abrasive Nanocoatings: Current and Future Applications Woodhead Publ. in Mater. 2015. ISBN: 978-0-85709-211-3. P. 430.
3. Amoudache, S.: J. Applied Phys. 119 (2016) 114502.
4. Sharma, N.: J. Nanoelectr. Optoelectr. 11 (2016) 694.
5. Pennec, Y.: Advances in Applied Mechanics 52 (2019) 105.
* 6. Bhattacharjee, K.: US Patent No. 10211806 B2 (2019).
* 7. Bhattacharjee, K.: US Patent No. 10326426 B2 (2019).
* 8. Bhattacharjee, K.: US Patent No. 10305442 B2 (2019).
* 9. Bhattacharjee, K.: US Patent No. 10305443 B2 (2019).
10. Sharma, N.: IEEE Trans. Electron Dev. 67 (2020) 289.
11. Kumar, N.: IEEE Trans. Nanotechnol. 19 (2020) 527.
12. Upadhyay, K.T.: Mater. Sci Engn. B 263 (2021) 114849.
13. Eisner, S.R.: IEEE Aerospace Conf. Proc. 2021.
14. Pal, P.:IEEE Sensors J. 21 (2021) 12998.
# 15. Sharma, N.: Lecture Notes in Networks and Syst. 204 (2021) 13.
* 16. Bhattacharjee, K.: Solidly mounted layer thin film device with grounding layer. US Patent No. 10938367 B2 (2021).
* 17. Yogendra, G.: In VLSI and hardware implementations using modern machine learning methods. CRC Press. ISBN 978-1-032-06171-9, 2021, pp. 163-178.
18. Sharma, N.: J. Mater. Chem. C 10 (2022) 12157.
# 19. Gupta, Y.: VLSI and Hardware Implementations using Modern Machine Learning Methods. CRC 2022, pp. 163-179. ISBN 978-100-320-103-8
Liday, J., Vogrinčič, P., Hotový, I., Bonanni, A., Sitter, H., Lalinský, T., Vanko, G., Řeháček, V., Breza, J., Ecke, G., : Ohmic contacts to p-GaN using Au/Ni-Mg-O metallization. J. Electr. Engn. 61 (2010) 378-381.
1. Magdenko, L.: J. Vacuum Sci Technol. B 30 (2012) 022205.
Jakovenko, J., Lalinský, T., Držík, M., Ivanova, M., Vanko, G., and Husák, M.: GaN, GaAs and silicon based micromechanical free standing hot plates for gas sensing, Procedia Chemistry 1 (2009) 804-807.
1. Vittoz, S.: Procedia Engn. 5 (2010) 91.
2. Griessler, C.: Microelectr. Engn. 88 (2011) 1779.
3. Vittoz, S.: Sensors Actuators A 172 (2011) SI27.
# 4. Vittoz, S.: Proc. 4th IEEE Inter.Workshop on Adv. Sensors Interfaces – IWASI 2011, art. no. 6004678, p. 17.
# 5. Brunet, E.: In Oxide Ultrathin Films. Weinheim: Wiley-VCH 2011 ISBN: 978-352733016-4 P. 239.
6. Huang, C.-Y.: Sustainability 10 (2018) 3451.
7. Guo, X.Y.: Mater. Sci Semicond. Process. 153 (2023) 107173.
Vanko, G., Lalinský, T., Haščík, Š., Rýger, I., Mozolová, Ž., Škriniarová, J., Tomáška, M., Kostič, I., and Vincze, A.: Impact of SF6 plasma treatment on performance of AlGaN/GaN HEMT. Vacuum 84 (2009) 235-237.
1. Wang, Y.Z.: Applied Phys. Lett. 98 (2011) 043506.
2. Hirose, M.: Phys. Status Solidi C 9 (2012) 361.
3. Wang, Y.Z.: Applied Phys. Lett. 101 (2012) 063505.
4. Zhang, H.Y.: J. Phys. D 46 (2013) 435102.
5. Bisi, D.: Europ. Solid-State Dev. Research Conf. 2013, Art. no. 6818819, P. 61.
6. Lee, N.-H.: Japan. J. Applied Phys. 53 (2014) SI04EF10.
7. Du, Y.-D.: Chinese Phys. Lett. 31 (2014) 048501.
8. Tzou, A.-J.: Semicond. Sci Technol. 31 (2016) 055003.
9. Mao, L.-F.: ECS J. Solid State Sci Technol. 8 (2019) P472.
# 10. Han, J.: Faguang Xuebao/Chinese J. Lumin. 40 (2019) 915.
11. Chen, D.Y.: Semicond. Sci Technol. 37 (2022) 035011.
12. Cho, H.K.: IEEE Photon. Technol. Lett. 35 (2023) 915.
Lalinský, T., Rýger, I., Rufer, L., Vanko, G., Haščík, Š., Mozolová, Ž., Škriniarová, J., Tomáška, M., Kostič, I., Vincze, A., : Surface acoustic wave excitation on SF6 plasma-treated AlGaN/GaN heterostructure. Vacuum 84 (2009) 231-234.
1. Zhang, D.: Materials Research Bull. 46 (2011) 1582.
Lalinský, T., Rufer, L., Vanko, G., Mir, S., Haščík, Š., Mozolová, Ž., Vincze, A., and Uherek, F.: AlGaN/GaN heterostructure-based surface acoustic wave-structures for chemical sensors. Applied Surface Sci 255 (2008) 712-714.
1. Cho, E.: J. Vacuum Sci Technol. B 27 (2009) 2079.
2. Lee, C.M.: IEEE Sensors (2010) 2008.
3. Chen, T.Y.: IEEE Trans. Electron Dev. 58 (2011) 1541.
4. Zhang, D.: Materials Research Bull. 46 (2011) 1582.
5. Lu, X.: IEEE Sensors J. 13 (2013) 1245.
6. Yang, H.: Europ. Phys. J.-Applied Phys. 72 (2015) 20301.
7. Wang, H.: Applied Surface Sci 369 (2016) 414.
8. Chang, C.-H.: IEEE Trans. Electron Dev. 67 (2020) 296.
9. Horta, I.M.: Surfaces Interfaces 40 (2023) 103023.
Lalinský, T., Držík, M., Jakovenko, J., Vanko, G., Mozolová, Ž., Haščík, Š., Chlpík, J., Hotový, I., Řeháček, V., Kostič, I., Matay, L., and Husák, M.: GaAs based micromachined thermal converter for gas sensors, Sensors Actuators A 142 (2008) 147-152.
1. Zhang, B.Z.: Advanced Materials Res. 97-101 (2010) 4221.
# 2. Jia, X.: Chinese J. Sensors Actuators 23 (2010) 188.
# 3. Zhou, Z.: Yi Qi Yi Biao Xue Bao/Chinese J. Sci Instrum. 34 (2013) 2757.
# 4. Zhao, W.: Yi Qi Yi Biao Xue Bao/Chinese J. Sci Instrum. 37 (2016) 579.
5. Huang, C.-Y.:Sustainability 10 (2018) 3451.
6. Zhao, W.-J.: Sensors 19 (2019) Iss. 17.
Tomáška, M., Lalinský, T., Vanko, G., and Mišun, M.: High frequency characterization and properties of AlGaN/GaN HEMT structures. In: ASDAM 2008. The 7th Inter. Conf. Advanced Semicond. Devices Microsyst. Eds. Š. Haščík and J.Osvald. Piscataway: IEEE 2008. ISBN: 978-1-4244-2325-5. P. 331-334.
1. Jiang, C.: Nanotechnol. 28 (2017) 455203.
Hotový, I., Řeháček, V., Mika, F., Lalinský, T., Haščík, Š., Vanko, G., and Držík, M.: Gallium arsenide suspended microheater for MEMS sensor arrays, Microsyst. Technol. 14 (2008) 629-635.
1. Lee, J.: J. Microelectromech. Systems 17 (2008) 1513.
2. Biro, F.: IEEE THERMINIC. Berlin 2013. P. 116.
3. Biro, F.: Microelectron. J. 45 (2014) 1822.
4. Samaeifar, F.: Sensor Rev. 35 (2015) 116.
5. Samaeifar, F.: Experimen. Techniq. 40 (2016) 755.
6. Spruit, Ronald G.: J. Microelectromech. Systems 26 (2017) 1165.
7. van Omme, J.T.: Ultramicroscop. 192 (2018) 14.
8. Wang, C.-P.: Microelectron. Engn. 228 (2020) 111334.
9. Kalinin, I.A.: Sensors Actuators A 317 (2021) 112457.
10. Biro, F.: Microsystem Technol.-Micro-And Nanosystems-Inf. Storage Process. Systems 28 (2022) 2511.
11. Han, J.: J. Micromech. Microengn. 33 (2023) 075007.
12. Pleshakov, G.A.: Micromach. 14 (2023) 2023.
# 13. Zheng, S.H.: In-Situ Transmiss. Electron Microscopy. 2023, pp. 83-104.
14. Zhang, T.: Micromach. 15 (2024) 130.
15. Yaguchi, T.: Microscopy 73 (2024) 117.
Vanko, G., Lalinský, T., Tomáška, M., Haščík, Š., Mozolová, Ž., Škriniarová, J., Kostič, I., Vincze, A., Uherek, F., : Impact of SF6 plasma on DC and microwave performance of AlGaN/GaN HEMT structures. In: ASDAM 2008. Eds. Š. Haščík and J.Osvald. Piscataway: IEEE 2008. ISBN: 978-1-4244-2325-5. P. 335-338.
1. Egorkin, V.: Proc. 2017 IEEE ELCONRUS. P. 1131.
Vanko, G., Lalinský, T., Mozolová, Ž., Liday, J., Vogrinčič, P., Vincze, A., Uherek, F., Haščík, Š., and Kostič, I.:Nb-Ti/Al/Ni/Au based ohmic contacts to AlGaN/GaN. Vacuum 82 (2008) 193-196.
1. Škriniarová, J.: ASDAM 2008. Piscataway: IEEE 2008. ISBN: 978-1-4244-2325-5. P. 319.
2. Tellez, H.: Anal. Bioanal. Chem. 397 (2010) 2865.
3. Wu, T.-T.: J. Lightwave Technol. 29 (2011) 3757.
4. Lin, Y.-S.: Semicond. Sci Technol. 28 (2013) SI074018.
5. Redondo-Cubero, A.: J. Phys. D 47 (2014) 185302.
6. Wang, N.-F.: Innovation, Comm. Engn. (2014) 301.
# 7. Stuchlíková, L.: ASDAM 2014. Art. no. 6998675, p. 181.
8. Jung, S.M.: Semicond. Sci Technol. 30 (2015) 075012.
9. Greco, G.: Applied Surface Sci 383 (2016) 324.
* 10. Ilgiewicz, G.: Proc. ADEPT. Žilina: Univ. Žilina 2017. ISBN 978-80-554-1342-6. P. 60.
* 11. Macherzynski, W.: Proc. ADEPT. Žilina: Univ. Žilina 2017. ISBN 978-80-554-1342-6. P. 251.
12. Douglas, E. A.: Phys. Status Solidi A 214 (2017) 1600842.
13. Klein, B.A.: ECS J. Solid State Sci Technol. 6 (2017) S3067.
14. Klein, B.A.: J. Electron. Mater. 48 (2019) 5581.
# 15. Razzak, T.: Inter. J. High Speed Electron. Systems 28 (2019) 1940009.
16. Dang, P.: Sci Adv. 7 (2021) eabf1388.
17. Greco, G.: Applied Phys. Lett. 124 (2024) 012103.
Haščík, Š., Hotový, I., Lalinský, T., Vanko, G., Řeháček, V., Mozolová, Ž., : Preparation of thin GaAs suspended membranes for gas microsensors using plasma etching. Vacuum 82 (2008) 236-239.
1. Park, Y.H.: Microelectr. Engn. 87 (2010) 548.
# 2. Rezaur Raihan, M.: Progress Electromagn. Research C 21 (2011) 191.
# 3. Zhang, Z.: J. Southeast Univ. 28 (2012) 315.
4. Guo, S.: Vacuum 197 (2022) 110792.
5. Leon-Gonzalez, J.C.: Nanomater. 13 (2023) 1461.
Jakovenko, J., Husák, M., Lalinský, T., Držík, M., and Vanko, G.: Design and modeling of GaAs based hot plate for Gas sensors. In: DTIP 2007. Proc. Symp. on Design, Test, Integration and Packing of MEMS/MOEMS. Ed. Chakrabarty, K. et al. EDA Publ. 2007. ISBN 978-2-35500-000-3. P. 147-150.
1. Kamati, K.S.C.: IEEE Region 10 Symp. 2019, p. 231.
Rufer, L., Lalinský, T., Grobelny, D., Mir, S., Vanko, G., Öszi, Z., Mozolová, Ž., : GaAs and GaN based SAW chemical sensors: acoustic part design and technology. In: ASDAM 2006. Eds. J. Breza. et al. Piscataway: IEEE 2006. ISBN: 1-4244-0396-0. P. 165-168.
# 1. Zivković, Z.: Informacije MIDEM 39 (2009) 111.
2. Bose, S.: Environ. Quality Management 31 (2022) 29.
3. Ahmed, I.: IEEE Trans. Ultrason. Ferroelectr. Frequency Control 70 (2023) 291.
Lalinský, T., Vanko, G., Grujbár, M., Mozolová, Ž., Haščík, Š., and Kostič, I.: Nb-Ti/Al/Ni/Au ohmic metallic system to AlGaN/GaN. In: ASDAM 2006. Eds. J. Breza. et al. Piscataway: IEEE 2006. ISBN: 1-4244-0396-0. P. 151-154.
1. Macherzynski, W.: Adv. Electr. Electron. Engn. 14 (2016) 83.
2. Rosprim, J.P.: Proc. SPIE 10122 (2017) UNSP 1012205.