Stoklas, R., Hasenőhrl, S., Dobročka, E., Gucmann, F., and Kuzmík, J.: Electron transport properties in thin InN layers grown on InAlN, Mater. Sci Semicond. Process. 155 (2023) 107250.
1. He, Z.: Vacuum 220 (2024) 112833.
Šichman, P., Stoklas, R., Hasenöhrl, S., Gregušová, D., Ťapajna, M., Hudec, B., Haščík, Š., Hashizume, T., Chvála, A., Šatka, A., and Kuzmík, J.: Vertical GaN transistor with semi-insulating channel, Physica Status Solidi (a) 220 (2023) SI2200776.
1. Woo, K.: J. Phys.-Mater. 7 (2024) 022003.
Stoklas, R., Chvála, A., Šichman, P., Hasenöhrl, S., Haščík, Š., Priesol, J., Šatka, A., and Kuzmík, J.: Analysis and modeling of vertical current conduction and breakdown mechanisms in semi-insulating GaN grown on GaN: role of deep levels, IEEE Trans. Electron Dev. 68 (2021) 2365.
1. Kim, H.: J. Electron. Mater. 50 (2021) 6688.
2. Qin, Y.: J. Phys. D 56 (2023) 093001.
3. Liu, B.: Inter. J. Numeric. Modell.-Electron. Networks Dev. Fields 37 (2024) Iss. 2.
Gregušová, D., Dobročka, E., Eliáš, P., Stoklas, R., Blaho, M., Pohorelec, O., Haščík, Š., Kučera, M., and Kúdela, R.: GaAs nanomembranes in the high electron mobility transistor technology, Materials 14 (2021) 3461.
1. Tian, W.W.: J. Phys.-Cond. Matt. 36 (2024) 345003.
Zelent, M., Vetrova, Iu.V., Li, X., Zhou, Y., Šoltýs, J., Gubanov, V.A., Sadovnikov, A.V., Ščepka, T., Dérer, J., Stoklas, R., Cambel, V., and Mruczkiewicz, M.: Skyrmion formation in nanodisks using magnetic force microscopy tip, Nanomater. 11 (2021) 2627.
1. Chaves-O’Flynn, G.D.: Physica D 445 (2023) 133617.
Kuzmík, J., Adikimenakis, A., Ťapajna, M., Gregušová, D., Haščík, Š., Dobročka, E., Tsagaraki, K., Stoklas, R., and Georgakilas, A.: InN: breaking the limits of solid-state electronics, AIP Adv. 11 (2021) 125325.
1. Damas, G.B.: J. Chem. Phys. 158 (2023) 174313.
2. Loo, C.C.: Mater. Character. 205 (2023) 113279.
3. Enayati, H.: Crystals 14 (2024) 105.
Sojková, M., Dobročka, E., Hutár, P., Tašková, V., Pribusová Slušná, L., Stoklas, R., Píš, I., Bondino, F., Munnik, F., and Hulman, M.: High carrier mobility epitaxially aligned PtSe2 films grown by one-zone selenization, Applied Surface Sci 538 (2021) 147936.
1. Lukas, S.: Adv. Function. Mater. 31 (2021) 2102929.
2. Nakazawa, T.: Photonics 8 (2021) 505.
3. Miller, A.M.: Zeit. Naturfor. B-A J. Chem. Sci 77 (2022) 313.
4. Todorova, N.: Applied Surface Sci 611 (2023) 155534.
5. Tang, Q.Y.: Nanomater. 13 (2023) 1169.
6. Raczynski, J.: Mater. Sci Engn. B 297 (2023) 116728.
7. Liu, H.: Phys. Status Solidi RRL 17 (2023) Iss.12.
8. Cho, Y.S.: ECOMAT 5 (2023) 12358.
9. Kim, M.J.: Acta Materialia 268 (2024) 119776.
10. Liu, L.N.: J. Chem. Phys. 160 (2024) 141101.
Vetrova, Iu.V., Zelent, M., Šoltýs, J., Gubanov, V.A., Sadovnikov, A.V., Ščepka, T., Dérer, J., Stoklas, R., Cambel, V., and Mruczkiewicz, M.: Investigation of self-nucleated skyrmion states in the ferromagnetic/nonmagnetic multilayer dot, Applied Phys. Lett. 118 (2021) 212409.
1. Heyderman, L.: Applied Phys. Lett. 119 (2021) 080401.
2. Saavedra, E.: Sci Rep. 11 (2021) 23010.
3. Lepadatu, S.: J. Applied Phys. 130 (2021) 163902.
4. Orlov, V.A.: Techn. Phys. 67 (2022) 289.
Šichman, P., Hasenöhrl, S., Stoklas, R., Priesol, J., Dobročka, E., Haščík, Š., Gucmann, F., Vincze, A., Chvála, A., Marek, J., Šatka, A., and Kuzmík, J.: Semi-insulating GaN for vertical structures: role of substrate selection and growth pressure, Mater. Sci Semicond. Process. 118 (2020) 105203.
1. Mochizuki, K.: Japan. J. Applied Phys. 60 (2021) 018002.
2. Pan, Y.: Inter. J. Energy Res. 45 (2021) 15512.
3. Qin, Y.: J. Phys. D 56 (2023) 093001.
4. Woo, K.: J. Phys.-Mater. 7 (2024) 022003.
Hasenöhrl, S., Dobročka, E., Stoklas, R., Gucmann, F., Rosová, A., and Kuzmík, J.: Growth and Properties of N-polar InN/InAlN Heterostructures, Phys. Status Solidi A 217 (2020) 2000197.
1. Li, Y.Z.: Semicond. Sci Technol. 39 (2024) 075005.
Pohorelec, O., Ťapajna, M., Gregušová, D., Gucmann, F., Hasenöhrl, S., Haščík, Š., Stoklas, R., Seifertová, A., Pécz, B., Tóth, L., and Kuzmík, J.: Investigation of interfaces and threshold voltage instabilities in normally-off MOS-gated InGaN/AlGaN/GaN HEMTs, Applied Surface Sci 528 (2020) 146824.
1. Tian, Y.: Inter. J. Electrochem. Sci 15 (2020) 12682.
Gregušová, D., Tóth, L., Pohorelec, O., Hasenöhrl, S., Haščík, Š., Cora, I., Fogarassy, Z., Stoklas, R., Seifertová, A., Blaho, M., Laurenčíková, A., Oyobiki, T., Pécz, B., Hashizume, T., and Kuzmík, J.: InGaN/(GaN)/AlGaN/GaN normally-off metal-oxide-semiconductor high-electron mobility transistors with etched access region, Japan. J. Applied Phys. 58 (2019) SCCCD21.
1. Biswas, D.: Mater. Sci Semicond. Process. 135 (2021) 106109.
Chauhan, P., Hasenöhrl, S., Dobročka, E., Vančo, Ľ., Stoklas, R., Kováč, J., Šiffalovič, P., and Kuzmík J.: Effect of temperature and carrier gas on the properties of thick InxAl1-xN layer, Applied Surface Sci 470 (2019) 1-7.
1. Bangolla, H.K.: Nanoscale Adv. 4 (2022) 4886.
# 2. He, X.: Huagong Xuebao/CIESC J. 74 (2023) 2800.
3. Yue, Z.: J. Alloys Comp. 1001 (2024) 175193.
Hasenöhrl, S., Chauhan, P., Dobročka, E., Stoklas, R., Vančo, Ľ., Veselý, M., Bouazzaoui, F., Chauvat, M.-P., Reterana, P., and Kuzmík, J.: Generation of hole gas in non-inverted InAl(Ga)N/GaN heterostructures, Applied Phys. Express 12 (2019) 014001.
1. Murugapandiyan, P.: J. Electronic Mater. 49 (2020) SI524.
Stoklas, R., Gregušová, D., Hasenöhrl, S., Brytavskyi, I.V., Ťapajna, M., Fröhlich, K., Haščík, Š., Gregor, M., and Kuzmík, J.: Characterization of interface states in AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors with HfO2 gate dielectric grown by atomic layer deposition, Applied Surface Sci 461 (2018) 255-259.
1. Ber, E.: IEEE Trans. Electron Dev. 66 (2019) 2100.
2. Zhang, X.-Y.: Nanoscale Res. Lett. 14 (2019) 83.
3. Liu, M.: Chinese Phys. B 29 ( 127101(2020.
4. Akkaya, A.: Mater. Today-Proc. 46 (2021) 6939.
5. Mohanty, S.: Applied Phys. Lett. 119 (2021) 042901.
6. Cheng, W.C.: J. Vacuum Sci Technol. B 40 (2022) 022212.
7. Shen, C.X.: Adv. Sci 9 (2022) 2104599.
8. Zhu, X.F.: J. Europ. Ceram. Soc 43 (2023) 4349.
9. Wu, N.T.: Semicond. Sci Technol. 38 (2023) 063002.
10. Wang, B.X.: J. Vacuum Sci Technol. A 42 (2024) 012401.
11. Long, P.X.: Nanotechnol. 35 (2024) 025204.
12. Lee, G.: Electronics 13 (2024) 2783.
Kúdela, R., Šoltýs, J., Kučera, M., Stoklas, R., Gucmann, F., Blaho, J., Mičušík, M., Pohorelec, O., Gregor, M., Brytavskyi, I.V., Dobročka, E., and Gregušová, D.: Technology and application of in-situ AlOx layers on III-V semiconductors, Applied Surface Sci 461 (2018) 33-38.
1. Sa, Z.X.: Adv. Functional Mater. 33 (2023) Iss. 38.
Ťapajna, M., Stoklas, R., Gregušová, D., Gucmann, F., Hušeková, K., Haščík, Š., Fröhlich, K., Toth, L., Pecz, B., Micusik, M., Brunner, F., and Kuzmík, J.: Investigation of ‘surface donors’ in Al2O3/AlGaN/GaN metal-oxide-semiconductor heterostructures: Correlation of electrical, structural, and chemical properties, Applied Surface Sci 426 (2017) 656-661.
1. Huang, H.: J. Phys. D 51(2018) 345102.
2. Jo, Y.J.: Electron. Mater. Lett. 15 (2019) 179.
3. Shi, Y.: IEEE Trans. Electron Dev. 66 (2019) 4164.
4. He, F.: Chinese J. Catal. 41 (2020) SI9.
5. Shi, Y.: IEEE Trans. Electron Dev. 67 (2019) 2290.
6. Asubar, J.T.: IEEE Electron Dev. Lett. 41 (2020) 693.
7. Cai, Y.: Japan. J. Applied Phys. 59 (2020) 041001.
8. Low, R.S.: Applied Phys. Express 14 (2021) 031004.
9. Dashtian, K.: Coord. Chem. Rev. 445 (2021) 214097.
10. Vauche, L.: ACS Applied Electron. Mater. 3 (2021) 1170.
11. Kaushik, P.K.: Nanoscale Res. Lett. 16 (2021)159.
12. Kaplar, R.: Ultrawide Bandgap Semicond. 107 (2021) 191.
13. Ahbab, S.S.: Proc. IEEE Inter. Women in Engn. (WIE) Conf. Electr. Computer Engn., WIECON-ECE 2021. IEEE 2022, p. 59.
14. Gong, J.R.: Japan. J. Applied Phys. 61 (2022) 011003.
15. Lin, Y.S.: Sci Adv. Mater. 4 (2022) 1419.
16. Nautiyal, P.: Microelectron. Reliab. 139 (2022) 114800.
17. Brivio, F.: Applied Phys. Lett. 123 (2023) 022104.
# 18. Fernandes Paes Pinto Rocha, P.: Power Electronic Devices and Components 4 (2023) 100033.
19. Gong, J.R.: J. Applied Phys. 135 (2024) 115303.
Matys, M., Stoklas, R., Blaho, M., and Adamowicz, B.: Origin of positive fixed charge at insulator/AlGaN interfaces and its control by AlGaN composition, Applied Phys. Lett. 110 (2017) 243505.
1. Uedono, A.: J. Applied Phys. 123 (2018) 155302.
2. He, Z.: Semicond. Sci Technol. 34 (2019) 035020.
3. Tapajna, M.: Mater. Sci Semicond. Process. 91 (2019) 356.
4. Asubar, J.T.: IEEE Electron Device Lett. 41(2020) 693.
5. Zhao, Y.: Phys. Status Solidi a 217 (2020) 1900981.
6. Tapajna, M.: Crystals 10 (2020) 1153.
7. He, J.Q.:Adv. Electron. Mater. 7 (2021) 2001045.
8. Gong, J.R.: Japan. J. Applied Phys. 61 (2022) 011003.
9. Kohler, K.: Semicond. Sci Technol. 37 (2022) 025016.
10. Shibata, T.: Japan. J. Applied Phys. 61 (2022) 065502.
11. Lin, Y.S.: Sci Adv. Mater. 14 (2022) 1419.
12. Gong, J.R.: J. Applied Phys. 132 (2022) 135302.
13. Qiu, S.Y.: AIP Adv. 13 (2023) 055110.
14. Yang, Y.N.: Micromach.14 (2023) 1278.
Florovič, M., Stoklas, R. , Kováč, J., and Kordoš, P.: Temperature-induced instability of the threshold voltage in GaN-based heterostructure field-effect transistors, Semicond. Sci Technol. 32 (2017) 025017.
1. Wang, N.: AIP Adv. 7 (2017) 095317.
2. Lalinsky, T.: Phys. Status Solidi A 214 (2017) 1700691.
3. Chakraborty, A.: Superlatt. Microstr. 113 (2018) 147.
4. Cui, M.: IEEE Access 7 (2019) 184375.
5. Wu, W.W.: Phys. Status Solidi a 221 (2024) Iss. 6.
Stoklas, R., Gregušová, D., Blaho, M., Fröhlich, K., Novák, J., Matys, M., Yatabe, Z., Kordoš, P., and Hashizume, T.: Influence of oxygen-plasma treatment on AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors with HfO2 by atomic layer deposition: leakage current and density of states reduction, Semicond. Sci Technol. 32 (2017) 045018.
1. Liang, X.: Semicond. Sci Technol. 32 (2017) 095010.
2. Yoon, S.-J.: J. Alloys Compounds 741 (2018) 999.
3. Bazaka, K.: Nanoscale 10 (2018) 17494.
4. Wang, C.: Phys. Status Solidi a 215 (2018) 1800092.
5. Gulseren, M.E.: Mater. Research Express 6 (2019) 095052.
6. Gokhan, K.: Solid-State Electron. 158 (2019) 22.
7. Xu, K.: Chemistry-Europ. J. 25 (2019) 5014.
8. Cai, Y.: ICICDT 2019.
9. Biswas, M.: J. Lumines. 222 (2020) 117123.
10. Cai, Y.: Japan. J. Applied Phys. 59 (2020) 041001.
11. Cai, Y.: IEEE Access 8 (2020) 95642.
12. Abo-Kahla, D.A.M.: J. Optical Soc America B 37 (2020) A96.
# 13. Abo-Kahla, D.A.M.: Pramana – J. Phys. 94 (2020) 65.
14. Choi, S.: J. Alloys Compounds 854 (2021) 157186.
15. Akazawa, M.: Japan. J. Applied Phys. 60 (2021) 036503.
16. Izsak, T.: Mater. Sci Engn. B 273 (2021) 115434.
17. Schiliro, E.: ACS Applied Electr. Mater. 4 (2022) 406.
18. Wang, C.C.: Applied Phys. Express 17 (2024) 051002.
Gregušová, D., Gucmann, F., Kúdela, R., Mičušík, M., Stoklas, R., Válik, L., Greguš, J., Blaho, M., Kordoš, P., :Properties of InGaAs/GaAs metal-oxide-semiconductor heterostructure field-effect transistors modified by surface treatment,. Applied Surface Sci 395 (2017) 140-144.
1. Silva, J.C.F.: J. Molecular Model. 23 (2017) 204.
2. Kumar, J.: J. Alloys Compounds 727 (2017) 1089.
3. Sharma, I.: J. Alloys Compounds 723 (2017) 50.
4. Zhou, Y.: J. Colloid Interface Sci 560 (2020) 769.
# 5. Panda, S.: Proc. DevIC 2021, pp. 71-74.
6. Gil-Corrales, J.A.: Inter. J. Molecular Sci 23 (2022) 5169.
7. Panda, S.R.: Physica Scripta 97 (2022) 114006.
8. Panda, S.R.: Physica Scripta 98 (2023) 125984.
Matys, M., Adamowicz, J.B., Domanowska, A., Michalewicz, A., Stoklas, R., Akazawa, M., Yatabe, Z., and Hashizume, T.: On the origin of interface states at oxide/III-nitride heterojunction interfaces, J. Applied Phys. 120 (2016) 225305.
1. Uedono, A.: J. Applied Phys. 123 (2018) 155302.
2. Le, S.P.: J. Applied Phys. 123 (2018) 034504.
3. Im, K.-S.: IEEE J. Electron Dev. Soc 6 (2018) 354.
4. Sato, T.: Applied Phys. Lett. 113 (2018) 063505.
5. Liu, X.: ACS Applied Mater. Interfaces 10 (2018) 21721.
6. Jo, Y.J.: Electron. Mater. Lett. 15 (2019) 179.
7. Irokawa, Y.: AIP Adv. 9 (2019) 085319.
8. Uedono, A.: J. Applied Phys. 127 (2020) 054503.
9. Kamada, Y.: Japan. J. Applied Phys. 59 (2020) 046505.
10. Duong D.N.: J. Applied Phys. 127 (2020) 094501.
# 11. Enisherlova, K.L.: Russian Microelectr. 49 (2020) 603.
12. Maksimowski, P.: Przemysl Chemiczny 100 (2021) 278.
13. Nguyen, D.D.: J. Applied Phys. 130 (2021) 014503.
14. Rrustemi, B.: J. Applied Phys. 130 (2021) 105704.
15. Zheng, Z.Y.: IEEE Electron Dev. Lett. 42 (2021) 1584.
16. Raja, P.V.: Electron. 10 (2021) 3096.
17. Zhang, L.: IEEE Inter. Electron Devices Meet. 2021.
18. Meneghini, M.: J. Applied Phys. 130 (2021) 181101.
19. Calzolaro, A.: Materials 15 (2022) 791.
20. Zhang, J.H.: AIP Adv. 12 (2022) 045111.
21. Zhang, L.: IEEE Electron Dev. Lett. 43 (2022) 1822.
22. Blanton, E.W.: Applied Phys. Lett. 122 (2023) 173502.
23. Qiang, L.: Modern Phys. Lett. B 37 (2023) 2350092.
24. Yoo, S.H.: Phys. Rev. Applied 19 (2023) 064037.
25. Mallem, S.P.R.: Nanomater. 13 (2023) 2132.
26. Su, H.K.: IEEE Electron Dev. Lett. 44 (2023) 1939.
27. Deng, Y.C.: J. Applied Phys. 135 (2024) 084504.
28. Zhang, K.: Phys. Status Solidi A 221 (2024) Iss. 12.
Ťapajna, M., Stoklas, R., Gregušová, D., Válik, L., Gucmann, F., Hušeková, K., Haščík, Š., Fröhlich, K., Toth, L., Pecz, B., Micusik, M., Brunner, F., Hashizume, T., and Kuzmík, J.: On the origin of surface donors in AlGaN/GaN metal-oxide semiconductor heterostructures with Al2O3 gate dielectric—correlation of electrical, structural, and chemical properties. In: Inter. Workshop on Nitride Semicond. (IWN 2016) Orlando 2016.
1. Akazawa, M.: Phys. Status Solidi B 254 (2017) 1600691.
Florovic, M., Stoklas, R., and Kordos, P.: Temperature dependence of the threshold voltage in GaN-based HFETs and MOSHFETs. In: WOCSDICE EXMATEC 2016.
1. Alshahed, M.: IEEE Proc. ESSDERC Conf. 2017 P.196.
Matys, M., Stoklas, R., Kuzmík, J., Adamowicz, J., Yatabe, Z., and Hashizume, T.: Characterization of capture cross sections of interface states in dielectric/III-nitride heterojunction structures, J. Applied Phys. 119 (2016) 205304.
1. Kubo, T.: Semicond. Sci Technol. 32 (2017) 065012.
2. Kumar, S.: IEEE Trans. Electron Dev. 64 (2017) 4868.
3. Liu, X.: ACS Applied Mater. Interfaces 10 (2018) 21721.
4. Verma, M.: Trans. Electric. Electron. Mater. 21 (2020) 427.
5. Tapajna, M.: Crystals 10 (2020) 1153.
6. Deng, K.: Applied Surface Sci 542 (2021) 148530.
7. Minetto, A.: IEEE Trans. Electron Dev. 68 (2021) 5003.
8. Liu, Y.B.: Chinese Phys. B 30 (2021) 117302.
9. Modolo, N.: IEEE Trans. Electron Dev. 69 (2022) 4432.
10. Hatakeyama, Y.: AIP Adv. 12 (2022) 125224.
11. Zhang, H.: Micro Nanostruct. 178 (2023) 207579.
12. Khatun, M.: Heliyon 9 (2023) 20603.
13. Al Ahmed, S.R.: Energy Fuels 38 (2023) 1462.
Osvald, J., Stoklas, R., and Kordoš, P.: Low- and high-frequency capacitance of aluminum gallium nitride/gallium nitride heterostructures with interface traps, Mater. Sci in Semicond. Process. 31 (2015) 525-529.
1. Ziane, A.: J. Electron. Mater. 47 (2018) 5283.
2. Hoshii, T.: Japan. J. Applied Phys. 58 (2019) 061006.
3. Mao, W.: Applied Phys. Express 15 (2022) 016504.
4. Lin, X.Y.: IEEE Trans. Electron Dev. 70 (2023) 537.
Osvald, J., Stoklas, R., Kordoš, P., : Extraction of interface trap density of Al2O3/AlGaN/GaN MIS heterostructure capacitance. Phys. Status Solidi B 252 (2015) 996-1000.
1. Suria, A.J.: Semicond. Sci Technol. 31 (2016) 115017.
2. Yatabe, Z.: J. Phys. D 49 (2016) 393001.
3. Nishiguchi, K.: Japan. J. Applied Phys. 56 (2017) 101001.
4. Hashizume, T.: Mater. Sci Semicond. Process. 78 (2018) 85.
5. Kuzmin, M.: Adv. Mater. Interfaces 6 (2019) 1802033.
6. Ouduangvilai, K.: J. Semicond. Technol. Sci 19 (2019) 540.
7. Viswanathan, S.: Inter. J. Numer. Modell.-Electron. Networks Dev. Fields 35 (2022) 2936.
Gucmann, F., Gregušová, D., Stoklas, R., Dérer, J., Kúdela, R., Fröhlich, K., and Kordoš, P.: InGaAs/GaAs metal-oxide-semiconductor heterostructure field-effect transistors with oxygen-plasma oxide and Al2O3 double-layer insulator, Applied Phys. Lett. 105 (2014) 183504.
1. Kim, S.-H.: IEEE Electron Device Lett. 36 (2015) 884.
2. Kim, S.-H.: J. Nanosci Nanotechnol. 16 (2016) 10389.
3. Akazawa, M.: Phys. Status Solidi B 254 (2017) 1600691.
4. Bazaka, K.: Nanoscale 10 (2018) 17494.
5. Kim, S.-H.: ACS Applied Mater. Interfaces 10 (2018) 26378.
Stoklas, R., Gregušová, D., Hušeková, K., Marek, J., and Kordoš, P.: Trapped charge effects in AlGaN/GaN metal-oxide-semiconductor structures with Al2O3 and ZrO2 gate insulator, Semicond. Sci Technol. 29 (2014) 045003.
1. Yatabe, Z.: Japan. J. Applied Phys. 53 (2014) 100213.
2. Stuchlikova, L.: 10th Europ. Workshop on Microelectron. Education 2014. P. 116.
3. Mekni, O.: Ceramics Inter. 42 (2016) 8729.
4. Yatabe, Z.: J. Phys. D 49 (2016) 393001.
5. Mekni, O.: IEEE Inter. Conf. Dielectrics – ICD 2016. P. 139.
6. Mekni, O.: Mater. Research Proc. 1 (2016) 167.
# 7. Jiang, H.: MANTECH 2017.
8. Hashizume, T.: Mater. Sci Semicond. Process. 78 (2018) 85.
9. Touati, Z.: J. New Technol. Mater. 8 (2018) 16.
10. Gupta, S.D.: J. Applied Phys. 130 (2021) 015701.
11. Zhang, Y.: IEEE J. Electron Devices Soc 10 (2022) 540.
12. Manjunath, V.: J. Mater. Sci-Mater. Electron. 34 (2023) 792.
13. Hebali, K.: Trans. Electr. Electron. Mater. 24 (2023) 250.
Kordoš, P., Stoklas, R., Gregušová, D., Hušeková, K., Carlin, J., Grandjean, N., : Defect states characterization of non-annealed and annealed Zr2/InAlN/GaN structures by capacitance measurements,. Applied Phys. Lett. 102 (2013) 063502.
1. Liu, X.: Applied Phys. Lett. 104 (2014) 263511.
2. Akazawa, M.: Phys. Status Solidi B 254 (2017) 1600691.
3. Akazawa, M.: Japan. J. Applied Phys. 58 (2019) 106504.
4. Akazawa, M.: Japan. J. Applied Phys. 58 (2019) SIIB06.
5. Cui, P.: Japan. J. Applied Phys. 59 (2020) 020901.
6. Bordoloi, S.: IEEE Access 9 ((2021) 99828.
Laurenčíková, A., Hasenöhrl, S., Eliáš, P., Stoklas, R., Blaho, M., Novotný, I., Križanová, Z., Novák, J., :Ohmic contacts to p-GaP/n-ZnO core/shell nanowires based on Au metallization. Applied Surface Sci 267 (2013) 60-64.
1. Vidu, R.: Frontiers in Systems Neurosci 8 (2014) 91.
# 2. Opris, I.: In Recent advances on the modular organization of the cortex. Springer 2015 ISBN: 978-94-017-9899-0. P. 339.
3. Jahromi, K.E.: IEEE Electron Device Lett. 37 (2016) 43.
4. Pampaloni, N.P.: Front. Neurosci 12 (2019) 953.
Hasenöhrl, S., Eliáš, P., Šoltýs, J., Stoklas, R., Laurenčíková, A., Novák, J., : Zinc-doped gallium phosphide nanowires for photovoltaic structures,. Applied Surface Sci 269 (2013) 72-76.
1. Chandiramouli, R.: Mater. Sci Engn. B 194 (2015) 55.
2. Lee, S.: ACS Applied Mater. & Interfaces 8 (2016) 16178.
3. Horley, P.: Physica E 83 (2016) 227.
4. Chen, J.-Y.: CRYSTENGCOMM 19 (2017) 975.
5. Mohammad, R.: Inter. J. Modern Phys. C 28 (2017) Iss. 3.
6. Kim, D.-H.: J. Electronic Mater. 46 (2017) 4750.
7. Sharov, V.: Scripta Materialia 248 (2024) 116128.
8. Singh, N.P.: Solid State Comm. 390 (2024) 115593.
Gregušová, D., Hušeková, K., Stoklas, R., Blaho, M., Jurkovič, M., Carlin, J., Grandjean, N., and Kordoš, P.:Zr2/InAlN/GaN metal-oxide-semiconductor heterostructure field-effect transistors with InAlN barrier of different compositions. Japan. J. Applied Phys. 52 (2013) 08JN07.
1. Schaefer, A.: Semicond. Sci Technol. 29 (2014) 075005.
2. Freedsman, J. J.: Applied Phys. Lett. 107 (2015) 103506.
3. Liu, H.-Y.: IEEE J. Electron Devices Soc 4 (2016) 358.
4. Duan, T.: In Gallium Nitride Power Devices. Pan Stanford 2017. ISBN 978-981-4774-09-3. P. 145-191.
5. Chen, F.: J. Electron Mater. 48 (2019) Iss. SI11.
6. Cui, P.: Japan. J. Applied Phys. 59 (2020) 020901.
Kordoš, P., Kúdela, R., Stoklas, R., Čičo, K., Mikulics, M., Gregušová, D., Novák, J., : Aluminum oxide as passivation and gate insulator in GaAs-based field-effect transistors prepared in situ by metal-organic vapor deposition. Applied Phys. Lett. 100 (2012) 142113.
1. Wang, L.S.: Applied Phys. Lett. 103 (2013) 092901.
2. Wang, L.-S.: Applied Phys. Express 7 (2014) 061201.
3. Aoki, T.: Applied Phys. Express 7 (2014) 106502.
4. Liu, L. N.: Applied Phys. Lett. 107 (2015) 213501.
5. Liu, L.: J. Vacuum Sci Technol. B 33 (2015) 050601.
6. Liu, L.N.: Physica Status Solidi-R 10 (2016) 703.
7. Moille, G.: Laser & Photonics Rev. 10 (2016) 409.
8. Liu, L. N.: Applied Phys. Lett. 110 (2017) 123506.
9. Liu, L.N.: Physica Status Solidi-R 11 (2017) 1700180.
10. Liu, L.N.: IEEE Trans. Electron Dev. 65 (2018) 72.
11. Izsak, T.: Mater. Sci Engn. B 273 (2021) 115434.
12. Vimala, P.: Inter. J. Comput. Mater. Sci Engn. 10 (2021) 2150021.
Novák, J., Šoltýs, J., Eliáš, P., Hasenöhrl, S., Stoklas, R., Laurenčíková, A., Mikulics, M., : Electrical and photoluminescence properties of individual GaP nanowires doped by zinc Phys. Status Solidi a 209 (2012) 2505-2509.
1. Jiang, H.-B.: Chinese Sci Bull. 59 (2014) SI2135.
2. Wallentin, J.: Nano Lett. 14 (2014) 1707.
3. Tomioka, K.: J. Phys. D 47 (2014) SI394001.
4. Liao, G.: Sci Rep. 6 (2016) 28240.
Novák, J., Novotný, I., Kováč, J., Eliáš, P., Hasenöhrl, S., Križanová, Z., Vávra, I., Stoklas, R., : Preparation of thin Ga-doped ZnO layers for core–shell GaP/ZnO nanowires. Applied Surface Sci 258 (2012) 7607-7611
1. Jiang, Y.: Phys. Chem. Chem. Phys. 17 (2015) 16784.
2. Mohammad, R.: Physica E 73 (2015) 213.
3. Huang, J.-M.: Phys. Chem. Chem. Phys. 18 (2016) 15251.
4. Belorus, A.O.: IEEE NW Russia Young Researchers in Electr. Electron. Engn. Conf. (2019) 763.
Kordoš, P., Mikulics, M., Stoklas, R., Čičo, K., Dadgar, A., Grützmacher, D., Krost, A., : Thermally oxidized InAlN of different compositions for InAlN/GaN heterostructure field-effect transistors. J. Electronic Mater. 41 (2012) 3013-3016.
1. Lachab, M.: J. Phys. D 47 (2014) 135108.
2. Huang, X.-X.: J. Electron. Mater. 44 (2015) 3783.
3. Palmese, E.: J. Applied Phys. 129 (2021) 125105.
4. Xue, H.T.: J. Applied Phys. 134 (2023) 075301.
Čičo, K., Hušeková, K., Ťapajna, M., Gregušová, D., Stoklas, R., Kuzmík, J., Carlin, J., Grandjean, N., Pogany, D., and Fröhlich, K.: Electrical properties of InAlN/GaN high electron mobility transistor with Al2O3, ZrO2, and GdScO3 gate dielectrics, J. Vacuum Sci Technol. B 29 (2011) 01A808.
1. Zhou, Q.: Japan. J. Applied Phys. 51 (2012) 04DF02.
2. Akazawa, M.: Applied Phys. Lett. 101 (2012) 122110.
3. Liu, X.: Applied Phys. Lett. 103 (2013) 053509.
4. Bera, M.K.: ECS Trans. 53 (2013) 65.
5. Hu, Z.: Applied Phys. Express 7 (2014) 031002.
6. Bera, M. K.: ECS J. Solid State Sci Technol. 3 (2014) Q120.
7. Schaefer, A.: Semicond. Sci Technol. 29 (2014) 075005.
8. Mazumder, B.: J. Applied Phys. 116 (2014) 134101.
9. Freedsman, J. J.: Applied Phys. Lett. 107 (2015) 103506.
10. Feijoo, P.C.: Thin Solid Films 593 (2015) 62.
11. Xu, Z.: J. Crystal Growth 447 (2016) 1.
12. Dutta, G.: IEEE Trans. Electron Dev. 63 (2016) 1450.
13. Dutta, G.: IEEE Trans. Electron Dev. 63 (2016) 4693.
14. Jena, K.: IET Circuits Dev. & Systems 10 (2016) 423.
# 15. Hardtdegen, A.: IEEE IMW 2016. ISBN: 978-146738831-3. Art. No. 7495280.
# 16. Schäfer, A.: J. Alloys Comp. 651 (2015) 514.
17. Tromm, T. C. U.: ECS Trans. 72 (2016) 307.
18. Akazawa, M.: Phys. Status Solidi B 254 (2017) 1600691.
19. Pampillon Arce, M.A.: Springer Theses-Recogn. Outstand. PhD Research. Springer 2017. ISBN 978-3-319-66606-8, pp. 1-20.
20. Kanaga, S.: IEEE Inter. Conf. Electron. Comput. Comm. Technol. 2018.
21. Terkhi, S.: Indian J. Phys. 92 (2018) 847.
22. Adak, S.: Nano 14 (2019) 1950060.
23. Akazawa, M.: Japan. J. Applied Phys. 58 (2019) 106504.
24. Akazawa, M.: Japan. J. Applied Phys. 58 (2019) SIIB06.
25. Kanaga, S.: IEEE Trans. Device Mater. Reliab. 20 (2020) 613.
26. Cui, X.: Nano Energy 68 (2020) 104361.
27. Cui, P.: Japan. J. Applied Phys. 59 (2020) 020901.
28. Taherian, A.: J. Applied Phys. 135 (2024) 173102.
Stoklas, R., Gregušová, D., Gaži, Š., Novák, J., and Kordoš, P.: Performance of AlGaN/GaN metal-insulator-semiconductor heterostructure field-effect transistors with AlN gate insulator prepared by reactive magnetron sputtering. J. Vacuum Sci Technol. B 29 (2011) 01A809.
1. Shih, H.-A.: Japan. J. Applied Phys. 51 (2012) Part 2 02BF01.
2. Shih, H.-A.: Applied Phys. Lett. 101 (2012) 043501.
3. Freedsman, J.J.: Applied Phys. Lett. 101 (2012) 013506.
4. Tuan, Q.N.: Phys. Status Solidi C 10 (2013) 1401.
5. Shih, H.-A.: J. Applied Phys. 116 (2014) 184507.
6. Son, P.L.: J. Applied Phys. 116 (2014) 054510.
7. Le, S.P.: J. Applied Phys. 119 (2016) 204503.
8. Tan, S.: J. Semicond. 40 (2019) 042801.
9. Ranjan, K.: Applied Phys. Express 12 (2019) 106506.
10. Fukuhara, N.: J. Applied Phys. 133 (2023) 085702.
Mikulics, M., Stoklas, R., Dadgar, A., Gregušová, D., Novák, J., Grützmacher, D., Krost, A., and Kordoš, P.:InAlN/GaN/Si heterostructures and field-effect transistors with lattice matched and tensely or compressively strained InAlN, Applied Phys. Lett. 97 (2010) 173505.
1. Hasan, M.T.: Applied Phys. Lett. 99 (2011) 132102.
2. Zhang X.-F.: Chinese Phys. B 22 (2013) 017202.
3. Chen, H.: J. Applied Phys. 113 (2013) 194509.
4. Yang, Y.-N.: Acta Phys. Sinica 62 (2013) 177302.
5. Yu, Y.-X.: Chinese Phys. B 23 (2014) 047201.
6. Smith, M.D.: J. Mater. Chem. C 2 (2014) 5787.
7. Chen, H.: J. Applied Phys. 116 (2014) 074510.
8. Freedsman, J. J.: Applied Phys. Lett. 107 (2015) 103506.
9. Afzal, N.: Mater. Research Express 3 (2016) 085904.
# 10. Shen, B.: In Handbook of GaN Semicond. Mater. and Devices. CRC Press 2017. ISBN: 978-149874714-1, pp. 3-52.
11. Gaubas, E.: Semicond. Sci Technol. 33 (2018) 075015.
12. Xing, J.: J. Applied Phys. 124 (2018) 034904.
13. Biswas, D.: Semicond. Sci Technol. 34 (2019) 055014.
14. Sidikejiang, S.: Phys. Rev. B 107 (2023) 045202.
Gregušová, D., Gaži, Š., Sofer, Z., Stoklas, R., Dobročka, E., Mikulics, M., Greguš, J., Novák, J., Kordoš, P., : Oxidized Al film as an insulation layer in AlGaN/GaN Metal–Oxide–Semiconductor heterostructure field effect transistors Japan. J. Applied Phys. 49 (2010) art. no. 046504.
1. Ozen, S.: Mater. Res. Express 3 (2016) 045012.
Gregušová, D., Stoklas, R., Mizue, C., Hori, Y., Novák, J., Hashizume, T., and Kordoš, P.: Trap states in AlGaN/GaN metal-oxide-semiconductor structures with Al2O3 prepared by atomic layer deposition. J. Applied Phys. 107 (2010) 106104.
1. Hung, T.-H.: Applied Phys. Lett. 99 (2011) 162104.
2. Liu, X.: Applied Phys. Lett. 99 (2011) 093504.
3. Nepal, N.: Applied Phys. Express 4 (2011) 055802.
4. Long, R.D.: Materials 5 (2012) 1297.
5. Jackson, C.M.: J. Applied Phys. 113 (2013) 204505.
6. Zhang, K.: J. Applied Phys. 113 (2013) 174503.
7. Hahn, H.: Japan. J. Applied Phys. 52 (2013) 090204.
8. Ye, G.: Applied Phys. Lett. 103 (2013) 142109.
9. Zhao, S.L.: Applied Phys. Lett. 103 (2013) 212106.
10. Anand, M.J.: Phys. Status Solidi C 10 (2013) 1421.
11. Kong, Y.: IEEE Electron Device Lett. 35 (2014) 336.
12. Zhang P.: Chinese Physics Lett. 31 (2014) 037302.
13. Ma, X.-H.: Applied Phys. Lett. 104 (2014) 093504.
14. Schaefer, A.: Semicond. Sci Technol. 29 (2014) 075005.
15. Zhang, K.: Semicond. Sci Technol. 29 (2014) 075019.
16. Liao, X.-Y.: Chinese Phys. B 23 (2014) 057301.
17. Bakeroot, B.: J. Applied Phys. 116 (2014) 134506.
18. Lu, X.: Applied Phys. Lett. 105 (2014) 102911.
19. Colon, A.: Solid-State Electr. 99 (2014) 25.
20. Kodama, S.: IEEE Inter. Meeting Future Electron Dev. Kansai 2014.
21. Fang, Y.: Superlatt. Microstr. 82 (2015) 201.
22. Lee, J.-Y.: J. Semicond. Technol. Sci 15 (2015) 16.
23. Zhang, P.: Chinese Phys. B 24 (2015) 127306.
24. Choi, S.: J. Semicond. Technol. Sci 15 (2015) 497.
25. Schiliro, E.: Phys. Status Solidi C 12 (2015) 980.
# 26. Wang, Y.-H.: MANTECH 2015. P. 367.
# 27. Nagao, K.: ECS Transactions 66 (2015) 11.
28. Lo Nigro, R.: Thin Solid Films 617 (2016) SI138.
29. Clemente, I.E.: Proc. SPIE 10224 (2016) 1022425.
30. Schiliro, E.: J. Vacuum Sci Technol. A 35 (2017) 01B140.
31. Kubo, T.: Semicond. Sci Technol. 32 (2017) 065012.
32. Lu, X.: IEEE Trans. Electron Dev. 64 (2017) 824.
33. Jackson, C. M.: ECS J. Solid State Sci Technol. 6 (2017) P489.
34. Panda, A.: NANO Lett. 17 (2017) 7853.
35. Gao, J.: Phys. Status Solidi A 215 (2018) 1700498.
36. Wang, H.: Solid-State Electr. 141 (2018) 13.
37. Bao, S.: Chinese Phys. B 28 (2019) 067304.
38. Lee, H-P.: Mater. Res. Express 6 (2019) 105904.
39. Surana, V. K.: J. Applied Phys. 126 (2019) 115302.
40. Ghosh, J.: Microelectron. Engn. 216 (2019) 111097.
41. Kim, H.: Mater. Trans. 61 (2020) 88.
42. Liu, S.: IEEE Trans. Electron Dev. 68 (2021) 3296.
43. Yuan, Y.-D.: Chinese Phys. B 30 (2021) 077305.
44. Zheng, X.X.: Applied Phys. Express 15 (2022) 021001.
45. Calzolaro, A.: Materials 15 (2022) 791.
46. Liu, S.: Applied Phys. Lett. 120 (2022) 202102.
47. Huang, C.Y.: Chinese Phys. B 31 (2022) 097401.
48. Gonçalez, W.: IEEE Trans. Electron Dev. 71 (2024) 5212.
Kordoš, P., Stoklas, R., Gregušová, D., Gaži, Š., Novák, J., : Trapping effects in Al2O3/AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistor investigated by temperature dependent conductance measurement. Applied Phys. Lett. 96 (2010) 013505.
1. Zeng, H.Z.: J. Applied Phys. 107 (2010) 084508.
2. Arslan, E.: Microelectr. Reliab. 51 (2011) 576.
3. Freedsman, Joseph J.: Applied Phys. Lett. 101 (2012) 013506.
4. Zhang, K.: J. Applied Phys. 113 (2013) 174503.
5. Ma, X.-H.: Applied Phys. Lett. 104 (2014) 093504.
6. Zhang, P.: Chinese Phys. Lett. 31 (2014) 037302.
7. Lu, X.: Applied Phys. Lett. 104 (2014) 032903.
8. Zhang, K.: Semicond. Sci Technol. 29 (2014) 075019.
9. Liu, X.: Applied Phys. Lett. 104 (2014) 263511.
10. Liao, X.-Y.: Chinese Phys. B 23 (2014) 057301.
11. Shih, H.-A.: J. Applied Phys. 116 (2014) 184507.
12. Ma, J.: Applied Phys. Express 7 (2014) 091002.
13. Zhou, Y.: Semicond. Sci Technol. 29 (2014) 095011.
# 14. Kaushik, J.K.: IEEE 2nd ICEE 2014 – 7151157.
15. Ramanan, N.: IEEE Trans. Electron Dev. 62 (2015) 546.
16. Fang, Y.: Superlatt. Microstr. 82 (2015) 201.
17. Zhang, P.: Chinese Phys. B 24 (2015) 127306.
18. Jiang, H.: IEEE Trans. Electron Dev. 64 (2017) 832.
19. Wang, N.: AIP Adv. 7 (2017) 095317.
20. Byun, Y.-C.: Applied Phys. Lett. 111 (2017) 082905.
21. Ranjan, K.: Applied Phys. Express 12 (2019) 106506.
22. Lee, H.-P.: Mater. Res. Express 6 (2019) 105904.
23. Bao, S.: Chinese Phys. B 28 (2019) 067304.
24. Ren, Y.: Physica Status Solidi A 217 (2020) SI1900701.
25. Rai, N.: IEEE Electron Dev. Technol. Manufact. Conf. – EDTM 2020.
26. Rai, N.: IEEE J. Electron Dev. Soc 8 (2020) 1145.
27. Whiteside, M.: Mater. Sci Engn. B 262 (2020) 114707.
28. Whiteside, M.: Electronics 9 (2020) 1858.
29. Duman, S.: J. Mater. Sci-Mater. Electron. 31 (2020) 21260.
30. Huang, Z.W.: IEEE Trans. Electron Dev. 68 (2021) 1507.
31. Bhardwaj, N.: Applied Surface Sci 572 (2022) 151332.
Kordoš, P., Stoklas, R., Gregušová, D., and Novák, J.: Characterization of AlGaN/GaN metal-oxide-semiconductor field-effect transistors by frequency dependent conductance analysis, Applied Phys. Lett. 94 (2009) 223512.
1. Zeng, H.Z.: J. Applied Phys. 107 (2010) 084508.
2. Kayis, C.: IEEE Electron Device Lett. 31 (2010) 1041.
3. Kayis, C.: J. Applied Phys. 109 (2011) 084522.
4. Freedsman, J.: Japan. J. Applied Phys. 50 (2011) 04DF03.
5. Freedsman, J.J.: Applied Phys. Lett. 99 (2011) 033504.
6. Kayis, C.: Proc. SPIE 7939 (2011) 79392F.
7. Kayis, C.: Physica Status Solidi C 8 (2011) 1539.
8. Lee, B.: ECS Trans. 41 (2011) 445.
9. Freedsman, J.J.: AIP Adv. 2 (2012) 022134.
10. Freedsman, Joseph J.: Applied Phys. Lett. 101 (2012) 013506.
11. Fiorenza, P.: Applied Phys. Lett. 101 (2012) 172901.
12. Perez-Tomas, A.: Applied Phys. Lett. 102 (2013) 023511.
13. Zhang, K.: J. Applied Phys. 113 (2013) 174503.
14. Ye, G.: Applied Phys. Lett. 103 (2013) 142109.
15. Lo Nigro, R.: Surface Coatings Technol. 230 (2013) 152.
16. Fiorenza, P.: Applied Phys. Lett. 103 (2013) 112905.
17. Ma, X.-H.: Applied Phys. Lett. 103 (2013) 033510.
18. Anand, M.J.: Phys. Status Solidi C 10 (2013) 1421.
19. Ma, Xiao-H.: Applied Phys. Lett. 104 (2014) 093504.
20. Lu, X.: Applied Phys. Lett. 104 (2014) 032903.
21. Lo Nigro, R.: Thin Solid Films 563 (2014) 50.
22. Lu, X.: Phys. Status Solidi A 211 (2014) 775.
23. Roccaforte, F.: Phys. Status Solidi A 211 (2014) 2063.
24. Lu, X.: Applied Phys. Lett. 105 (2014) 102911.
25. Ma, J.: Applied Phys. Express 7 (2014) 091002.
26. Zhou, Y.: Semicond. Sci Technol. 29 (2014) 095011.
27. Colon, A.: Solid-State Electron. 99 (2014) 25.
28. Qin, X.: Applied Phys. Lett. 105 (2014) 011602.
29. Kaushik, J.K.: IEEE 2nd ICEE 2014 – 7151157.
30. Kaushik, J.K.: IEEE 2nd ICEE 2014 – 7151145.
31. Fang, Y.: Superlatt. Microstr. 82 (2015) 201.
32. Tham, W.H.: IEEE Electron Device Lett. 36 (2015) 1291.
33. Luo, J.: Chinese Phys. B 24 (2015) 117305.
34. Waller, W.M.: IEEE Trans. Electron Dev. 62 (2015) 2464.
35. Lo Nigro, R.: Mater. Chem. Phys. 162 (2015) 461.
36. Mehari, S.: IEEE Electron Device Lett. 36 (2015) 893.
37. Duan, T. L.: ECS J. Solid State Sci Technol. 5 (2016) P514.
38. Lu, X.: IEEE Trans. Electron Dev. 64 (2017) 824.
39. Wang, Q.: RSC Adv. 7 (2017) 11745.
40. Shi, Y.: Nanoscale Research Lett. 12 (2017) 342.
41. Fiorenza, P.: Physica Status Solidi A 214 (2017) 1600366.
42. Duan, T.: In Gallium Nitride Power Devices. Eds.Yu, H., Duan, T. New York: Pan Stanford 2017. ISBN 978-981-4774-09-3. P. 145-191.
43. Byun, Y.-C.: Applied Phys. Lett. 111 (2017) 082905.
# 44. Wang, Q.: Proc. Inter. Symp. Power Semicond. Devices and ICs 2017. Art. no. 7988926, P. 215.
45. Wang, H.: Japan. J. Applied Phys. 57 (2018) SI04FG05.
46. Roccaforte, F.: Rivista Del Nuovo Cimento 41 (2018) 625.
47. Taoka, N.: Semicond. Sci Technol. 34 (2019) 025009.
48. Arslan, E.: Microelectr. Reliab. 103 (2019) UNSP 113517.
49. Ranjan, K.: Applied Phys. Express 12 (2019) 106506.
50. Tokuda, H.: Japan. J. Applied Phys. 58 (2019) 106503.
51. Lee, H.-P.: Mater. Res. Express 6 (2019) 105904.
52. Surana, V.K.: J. Applied Phys. 126 (2019) 115302.
53. Kim, H.: Trans. Electr. Electron. Mater. 20 (2019) 359.
54. Kim, H.: J. Vacuum Sci Technol. B 37 (2019) 041203.
55. Kim, H.: Semicond. Sci Technol. 35 (2020) Iss. 1.
56. Kim, H.: Coatings 10 (2020) 489.
57. Cui, P.: Japan. J. Applied Phys. 59 (2020) 020901.
58. Whiteside, M.: Mater. Sci Engn. B 262 (2020) 114707.
59. Zhang, W.H.: IEEE J. Electron Dev. Soc. 9 (2021) 348.
60. Fu, Y.: Chinese Phys. B 30 (2021) 058101.
61. Whiteside, M.: Mater. Sci Engn. B 270 (2021) 115224.
62. Amir, W.: Sci Rep. 11 (2021) 22401.
63. Mayersky, J.: Applied Phys. Lett. 121 (2022) 102903.
64. Cui, P.: Semicond. Sci Technol. 38 (2023) 035011.
65. Gomeniuk, Y.V.: J. Electron. Mater. 52 (2023) SI3112.
66. Lee, H.J.: Electronics 13 (2024) 2490.
67. He, Z.Y.: Applied Phys. Lett. 125 (2024) 042106.
Gregušová, D., Stoklas, R., Eickelkamp, M., Fox, A., Novák, J., Vescan, A., Grützmacher, D., Kordoš, P., :Characterization of AlGaN/GaN MISHFETs on a Si substrate by static and high-frequency measurements. Semicond. Sci Technol. 24 (2009) 075014.
1. Lee, K.W.: Applied Phys. Lett. 96 (2010) 203506.
2. Liu, H.-Y.: IEEE Trans. Electron Dev. 61 (2014) 2760.
3. Chiu, Y.S.: Japan. J. Applied Phys. 55 (2016) 051001.
4. Chiu, Y.S.: Japan. J. Applied Phys. 56 (2017) 094101.
5. Huang, C.Y.: Materials 15 (2022) 6895.
Stoklas, R., Gaži, Š., Gregušová, D., Novák, J., Kordoš, P., : Enhancement of effective carrier velocity in AlGaN/GaN MOSHFETs with Al2O3 gate oxide. Physica Status Solidi c 5 (2008) 1935-1937.
1. Saadat, O.I.: IEEE Electron Device Lett. 30 (2009) 1254.
2. Li, Y.: IEEE Trans. Electron Dev. 64 (2017) 3139.
Stoklas, R., Gregušová, D., Novák, J., Vescan, A., and Kordoš, P.: Investigation of trapping effects in AlGaN/GaN/Si field-effect transistors by frequency dependent capacitance and conductance analysis, Applied Phys. Lett. 93 (2008) 124103.
1. Zeng, H.Z.: J. Applied Phys. 107 (2010) 084508.
2. Demirtas, S.: Microelectr. Reliab. 50 (2010) 758.
3. Bi, Z.W.: Chinese Phys. B 19 (2010) 077303.
4. Tan, S.: Applied Phys. Lett. 97 (2010) 053502.
5. Hu, C.Y.: Applied Phys. Lett. 97 (2010) 222103.
6. Arslan, E.: J. Electronic Mater. 39 (2010) 2681.
7. Quan, S.: Chinese Phys. B 20 (2011) 018101.
8. Joh, J.: IEEE Trans. Electron Dev. 58 (2011) 132.
9. Zade, D.: Microelectr. Engn. 88 (2011) 1109.
10. Tajima, M.: Japan. J. Applied Phys. 50 (2011) 061001.
11. Quan, S.: Chinese Phys. B 20 (2011) 058501.
12. Arslan, E.: Microelectr. Reliab. 51 (2011) 576.
13. Ma, X.H.: Chinese Phys. B 20 (2011) 027304.
14. Liu, L.: J. Vacuum Sci Technol. B 29 (2011) 060603.
15. Yang, L.-Y.: Chinese Phys. B 20 (2011) 117302.
16. Bi, Z.-W.: Chinese Phys. B 20 (2011) 087307.
17. Freedsman, J.J.: Applied Phys. Lett. 99 (2011) 033504.
18. Freedsman, J.J.: AIP Adv. 2 (2012) 022134.
19. Hu, C.-Y.: J. Applied Phys. 111 (2012) 084504.
20. Silvestri, M.: IEEE Electron Device Lett. 33 (2012) 1550.
21. Zhang, C.: Phys. Status Solidi C 9 (2012) 934.
# 22. Ren, F.: Mater. Res. Soc Symp. Proc. 1396 (2012) 115.
23. Shih, Hong-A.: Applied Phys. Lett. 101 (2012) 043501.
24. Freedsman, Joseph J.: Applied Phys. Lett. 101 (2012) 013506.
25. Perez-Tomas, A.: Applied Phys. Lett. 102 (2013) 023511.
26. Zhang, K.: J. Applied Phys. 113 (2013) 174503.
27. Feng, Q.: Chinese Phys. Lett. 30 (2013) 127302.
28. Fiorenza, P.: Applied Phys. Lett. 103 (2013) 112905.
29. Ma, X.-H.: Applied Phys. Lett. 103 (2013) 033510.
30. Capriotti, M.: Applied Phys. Lett. 104 (2014) 113502.
31. Ma, Xiao-H.: Applied Phys. Lett. 104 (2014) 093504.
32. Zhu, J.-J.: AIP Advan. 4 (2014) 037108.
33. Zhang, P.: Chinese Phys. Lett. 31 (2014) 037302.
34. Lansbergen, G.P.: Inter. Reliab. Phys. Symp. 2014.
35. Jung, H.: Phys. Status Solidi C 11 (2014) 940.
36. Shih, H.-A.: J. Applied Phys. 116 (2014) 184507.
37. Chen, Y.: Applied Phys. Lett. 105 (2014) 193502.
38. Yatabe, Z.: Japan. J. Applied Phys. 53 (2014) 100213.
39. Zhou, Y.: Solid-State Electr. 29 (2014) 095011.
40. Colon, A.: Solid-State Electr. 99 (2014) 25.
# 41. Gaewdang, T.: Advanced Mater. Research 931-932 (2014) 122.
42. Ando, Y.: IEEE Trans. Electron Dev. 62 (2015) 1440.
43. Chakraborty, A.: Applied Phys. Lett. 106 (2015) 082112.
44. Luo, J.: Chinese Phys. B 24 (2015) 117305.
45. He, Y.: Applied Phys. Lett. 107 (2015) 063501.
46. Lu, X.: Applied Phys. Express 9 (2016) 031001.
47. Knyazev, A.V.: Lecture Notes in Computer Sci 9728 (2016) 282.
48. Zheng, X.: Microelectron. Reliab. 63 (2016) 46.
49. Zhang, W.H.: Applied Phys. Lett. 110 (2017) 252102.
50. Kubo, T.: Semicond. Sci Technol. 32 (2017) 065012.
51. Fiorenza, P.: Phys. Status Solidi A 214 (2017) 1600366.
52. Zheng, X.: IEEE Trans. Electron Dev. 64 (2017) 1498.
53. Paine, B.M.: IEEE Trans. Device Mater. Reliab. 17 (2017) 130.
54. Lu, X.: IEEE Trans. Electron Dev. 64 (2017) 824.
55. Latrach, S.: Current Applied Phys. 17 (2017) 1601.
56. Kubo, T.: Semicond. Sci Technol. 32 (2017) 125016.
57. Le, S.P.: J. Applied Phys. 123(2018) 034504.
58. Yang, W.: 2018 IEEE 6TH Workshop Wide Bandgap Power Devices Appl. (WIPDA), pp. 103.
59. Ren J.: Acta Phys. Sinica 67 (2018) 247202.
60. Chakraborty, A.: Chinese J. Phys. 56 (2018) 2365.
61. Bao, S.: Chinese Phys. B 28 (2019) 067304.
62. Yang, W.: IEEE Trans. Device Mater. Reliab. 19 (2019) 350.
63. Zheng, X.: Microelectron. Reliab. 93 (2019) 57.
64. Arslan, E.: Microelectron. Reliab. 103 (2019) UNSP 113517.
65. Ranjan, K.: Applied Phys. Express 12 (2019) 106506.
66. Tokuda, H.: Japan. J. Applied Phys. 58 (2019) 106503.
67. Lee, H.-P.: Mater. Res. Express 6 (2019) 105904.
68. Zhang, H.: J. Supercrit. Fluids 158 (2020) 104746.
69. Liu, M.: Chinese Phys. Lett. 37 (2020) 097101.
70. Ranjan, K.: IEEE Electron Devices Technol. Manufact. Conf. – EDTM 2020.
71. Rai, N.: IEEE J. Electron Dev. Soc 8 (2020) 1145.
72. Ma, Q.: Japan. J. Applied Phys. 59 (2020) 101002.
73. Liu, S.: IEEE Trans. Electron Dev. 68 (2021) 3296.
74. Hong, Y.H.: Applied Phys. Lett. 119 (2021) 132103.
75. Chen, J.B.: J. Phys. D 55 (2022) 095112.
76. Calzolaro, A.: Materials 15 (2022) 791.
77. Zhao, S.L.: Results in Phys. 36 (2022) 105450.
78. Liu, S.: Applied Phys. Lett. 120 (2022) 202102.
79. Song, X.L.: Mater. Sci Semicond. Process. 148 (2022) 106809.
80. Miller, N.C.: IEEE Trans. Electron Dev. 70 (2023) 435.
81. Su, H.K.: IEEE Electron Device Lett. 44 (2023) 1939.
82. Su, H.K.: Applied Phys. Lett. 123 (2023) 132104.
83. Hong, Y.H.: IEEE Trans. Electron Dev. 71 (2024) 1502.
Kordoš, P., Gregušová, D., Stoklas, R., Gaži, Š., and Novák, J.: Transport properties of AlGaN/GaN metal–oxide–semiconductor heterostructure field-effect transistors with Al2O3 of different thickness, Solid-State Electr. 52 (2008) 973-979.
1. Osvald, J.: In: ASDAM 2008. Piscataway: IEEE 2008. ISBN: 978-1-4244-2325-5. P. 319.
2. Chen H.: Proc. 9th Inter. Conf. Solid-State and Integr. Circuits (2008) 1443.
3. Selvaraj, S.L.: J. Electrochem. Soc. 156 (2009) H690.
4. Osvald, J.: J. Applied Phys. 106 (2009) 013708.
5. Maeda, N.: Phys. Status.Solidi C 6 (2009) S1049.
6. Maeda, N.: Proc. SPIE 7216 (2009) 721605.
7. Liu, Z.H.: Applied Phys. Lett. 95 (2009) 223501.
8. Bi, Z.W.: 2009 IEEE Inter. Conf. Electron Dev. Solid-St. Circuits (2009) 419.
9. Taking, S.: Electronics Lett. 46 (2010) 301.
• 10. Osvald, J.: In: ASDAM 2010. Piscataway: IEEE, 2010. ISBN: 978-1-4244-8572-7. P. 167.
11. Bi, Z.W.: Chinese Phys. B 19 (2010) 077303.
12. Kim, K,-W.: Microelectr. Engn. 88 (2011) 1225.
13. Liu, S.: Japan. J. Applied Phys. 50 (2011) 04DF10.
14. Esposto, M.: Applied Phys. Lett. 99 (2011) 133503.
15. Hung, T.-H.: Applied Phys. Lett. 99 (2011) 162104.
16. Osvald, J.: J. Applied Phys. 110 (2011) 073702.
17. Kirkpatrick, C.: Phys. Status Solidi C 8 (2011) Is. 7-8.
18. Bi, Z.W.: Chinese Phys. B 29 (2012) 028501.
19. Ji, D.: Applied Phys. Lett. 100 (2012) 132105.
20. Kirkpatrick, C.J.: IEEE Electron Device Lett. 33 (2012) 1240.
21. Osvald, J.: ASDAM 2012 (2012) art. no. 6418555, pp. 59.
22. Hung, T.-H.: Applied Phys. Lett. 102 (2013) 072105.
* 23. Osvald, J.: ADEPT 2013. Žilina: Univ. Žilina 2013. ISBN 978-80-554-0689-3. P. 36.
24. Meng, D.: IEEE Electron Device Lett. 34 (2013) 738.
25. Osvald, J.: J. Electronic Mater. 42 (2013) 1184.
26. Ji, D.: Thin Solid Films 534 (2013) 655.
27. Kambayashi, H.: Japan. J. Applied Phys. 52 (2013) SIUNSP 04CF09.
28. Pang, L.: 2013 IEEE Power Energy Conf. (2013) 8.
29. Osvald, J.: Phys. Status Solidi A 210 (2013) 1340.
30. Liu, X.: Applied Phys. Lett. 103 (2013) 053509.
31. Osvald, J.: Environmen. Sci Engn. (2014) 215.
32. Mazumder, B.: J. Applied Phys. 116 (2014) 134101.
33. Feng, Q.: Chinese Phys. Lett. 32 (2015) 017301.
34. Winzer, A.: J. Applied Phys. 118 (2015) 124106.
35. Hung, C.-W.: Solid-State Electron. 124 (2016) 5.
# 36. Zhou, X.J.: J. Applied Phys. 120 (2016) 125706.
37. Teramoto, A.: IEEE Electron Device Lett. 38 (2017) 1309.
38. Liu, J.: Sensors 18 (2018) 813.
39. Koide, Y.: IEEE Inter. Conf. Microelectr. Test Struct. 2019, p. 40.
40. Rahman, M.W.: Applied Phys. Lett. 119 (2021) 013504.
Gregušová, D., Stoklas, R., Čičo, K., Lalinský, T., Kordoš, P., : AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors with 4nm thick Al2O3 gate oxide. Semicond. Sci Technol. 22 (2007) 947-951.
1. Talele, K.: Optoelectr. Advanced Mater. 1 (2007) 693.
2. Samuel, E.P.: Optoelectr. Advanced Mater. 1 (2007) 698.
3. Uesugi, T.: J. Applied Phys. 104 (2008) art. no. 016103.
4. Ooyama, K.: Japan. J. Applied Phys. 47 (2008) 5426.
5. Chattopadhyay, M.K.: Proc. Inter. Conf. Recent Advances Microwave Theory Appl. (2008) P. 63.
6. Cumana, J.: In: European Conf. Microwave Integrated Circuit 2008 – EuMIC 2008. Amsterdam: IEEE 2008. ISBN: 978-2-87487-007-1. P. 179-182.
7. Saadat, O.I.: IEEE Electron Device Lett. 30 (2009) 1254.
8. Hori, Y.: Japan. J. Applied Phys. 49 (2010) 080201.
9. Eickelkamp, M.: Phys. Status Solidi A 207 (2010) 1342.
10. Miyazaki, E.: Solid-State Electr. 62 (2011) 152.
11. Tajima, M.: Japan. J. Applied Phys. 50 (2011) 061001.
12. Esposto, M.: Applied Phys. Lett. 99 (2011) 133503.
13. Tian, B.: Semicond. Sci Technol. 26 (2011) 085023.
14. Venkatachalam, A.: Semicond. Sci Technol. 26 (2011) 085027.
15. Corrion, A. L.: IEEE Electron Device Lett. 32 (2011) 1062.
16. Hung, T.-H.: Applied Phys. Lett. 99 (2011) 162104.
17. Eickelkamp, M.: Physica Status Solidi C 8 (2011) 7.
# 18. Lee, B.: Inter. Semicond. Device Research Symp. – ISDRS 2011. IEEE, art. no. 6135162. ISBN 978-145771-7550.
# 19. Zhang, F.: Gongneng Cailiao/J. Functional Mater. 42 (2011) 992.
20. Hahn, H.: Semicond. Sci Technol. 27 (2012) 062001.
21. Hanna, M.J.: Applied Phys. Lett. 101 (2012) 153504.
22. Hung, T.-H.: Applied Phys. Lett. 102 (2013) 072105.
23. Tian B.-L.: Chinese Phys. Lett. 30 (2013) 026101.
24. Liu, H.-Y.: IEEE Trans. Electron Dev. 60 (2013) 2231.
25. Jackson, C.M.: J. Applied Phys. 113 (2013) 204505.
26. Sato, T.: IEEE Electron Device Lett. 34 (2013) 375.
27. Hori, Y.: J. Applied Phys.114 (2013) 244503.
28. Bouguenna, D.: Superlatt. Microstr. 62 (2013) 260.
29. Gatabi, I.R.: IEEE 2013 8TH DTIS. P. 62.
30. Zhang, Z.: J. Electronic Mater. 43 (2014) 828.
31. Dutta, G.: IEEE Electron Device Lett. 35 (2014) 1085.
32. Chou, B.-Y.: IEEE Electron Device Lett. 35 (2014) 1091.
33. Kim, D.-K.: J. Semicond. Technol. Sci 14 (2014) SI601.
34. Chou, B.-Y.: IEEE Electron Device Lett. 35 (2014) 903.
35. Colon, A.: Solid-State Electr. 99 (2014) 25.
36. Chou, B.-Y.: Semicond. Sci Technol. 30 (2015) 015009.
37. Asubar, J.T.: IEEE Trans. Electron Dev. 62 (2015) 2423.
38. Kim, J.-J.: Japan. J. Applied Phys. 54 (2015) 038003.
39. Lee, C.-S.: Semicond. Sci Technol. 31 (2016) 055012.
40. Dutta, G.: IEEE Trans. Electron Dev. 63 (2016) 1450.
41. Chang, S.-J.: Japan. J. Applied Phys. 55 (2016) 044104.
42. Dutta, G.: IEEE Trans. Electron Dev. 63 (2016) 4693.
43. Swain, R.: Mater. Sci Semicond. Process. 53 (2016) 66.
44. Wu, X.: Applied Phys. Lett. 109 (2016) 232101.
45. Lee, C.-S.: Mater. Sci Semicond. Process. 59 (2017) 1.
46. Lee, C.-S.: Mater. Sci Semicond. Process. 66 (2017) 39.
47. Lee, C.-S.: Semicond. Sci Technol. 32 (2017) 055012.
48. Jackson, C.M.: ECS J. Solid State Sci Technol. 6 (2017) P489.
49. Osvald, J.: Physica E 93 (2017) 238.
50. Li, Y.: IEEE Trans. Electron Dev. 64 (2017) 3139.
51. Lee, C.-S.: Semicond. Sci Technol. 33 (2018) 065004.
52. Gao, J.: Physica Status Solidi A 215 (2018) 1700498.
53. Lin, Y.-S.: IEEE Trans. Electron Dev. 65 (2018) 783.
54. Lee, C.-S.: IEEE J. Electron Dev. Soc 6 (2018) 1142.
55. Reddy, P.: J. Vacuum Sci Technol. A 36 (2018) 061101.
56. Lee, C.-S.: IEEE J. Electron Dev. Soc 7 (2019) 430.
57. Trung, N.H.: ECS J. Solid State Sci Technol. 9 (2019) Iss. 1.
58. Kanaga, S.: IEEE Trans. Device Mater. Reliab. 20 (2020) 613.
59. Reddy, P.: Semicond. Sci Technol. 35 (2020) 055007.
60. Singh, P.: IETE Techn. Rev. 38 (2021) 197.
61. Khachariya, D.: Applied Phys. Lett. 118 (2021) 122103.
62. Lee, C.-S.: IEEE J. Electron Dev. Soc 9 (2021) 1003.
63. Canales, B.G.: 36th Symp. Microelectron. Technol. – SBMICRO 2022.
# 64. Ghazali, N.A.: Lecture Notes in Electr. Engn. 2022, pp. 690-696.
# 65. Langpoklakpam, C.: WiPDA Asia 2023.
Gregušová, D., Stoklas, R., Čičo, K., Heidelberg, G., Marso, M., Novák, J., Kordoš, P., : Characterization of AlGaN/GaN MOSHFETs with Al2O3 as gate oxide, Physica Status Solidi c 4 (2007) 2720-2723.
1. Basu S.: J. Electrochem. Soc 157 (2010) H947.
2. Suria, A.J.: Semicond. Sci Technol. 31 (2016) 115017.
# 3. Senesky, D.G.: In Semiconductor-Based Sensors. World Sci Publ. 2016. ISBN: 978-981314673-0. P. 395-433.
4. Suria, A.J.: Applied Phys. Lett. 110 (2017) 253505.
5. Taoka, N.: Japan. J. Applied Phys. 57 (2018) 01AD04.
6. Calzolaro, A.: Materials 15 (2022) 791.
Kordoš, P., Gregušová, D., Stoklas, R., Čičo, K., and Novák, J.: Improved transport properties of Al2O3/AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect tranzistor, Applied Phys. Lett. 90 (2007) 123513.
1. Kuzmik, J.: IEEE Trans. Electron Dev. 55 (2008) 937.
2. Miczek, M.: J. Applied Phys. 103 (2008) art. no. 104510.
3. Arulkumaran, S.: Applied Phys. Express 2 (2009) 031001.
4. Selvaraj, S.L.: J. Electrochem. Soc. 156 (2009) H690.
5. Feng, Q.: Chinese Phys. B 18 (2009) 3014.
6. Miczek, M.: Japan. J. Applied Phys. 48 (2009) 04C092.
7. Maeda, N.: Phys. Status.Solidi C 6 (2009) S1049.
8. Maeda, N.: Proc. SPIE 7216 (2009) 721605.
9. Bi, Z.W.: Acta Physica Sinica 58 (2009) 7211.
10. Liu, Z.H.: Applied Phys. Lett. 95 (2009) 223501.
11. Zeng, H.Z.: J. Applied Phys. 107 (2010) 084508.
12. Tian, F.: J. Electrochem. Soc. 157 (2010) H557.
13. Kong, Y.C.: IEEE Electron Device Lett. 31 (2010) 93.
14. Liu, Z.H.: IEEE Electron Device Lett. 31 (2010) 96.
15. Basu S.: J. Electrochem. Soc 157 (2010) H947.
16. Eickelkamp, M.: Phys. Status Solidi A 207 (2010) 1342.
17. Mao, W.: Chinese Phys. Lett. 207 (2010) 128501.
18. Kim, K,-W.: Microelectr. Engn. 88 (2011) 1225.
19. Tajima, M.: Japan. J. Applied Phys. 50 (2011) 061001.
20. Liu, S.: Japan. J. Applied Phys. 50 (2011) 04DF10.
21. Zhou, B.: Chinese Phys. Lett. 28 (2011) 107303.
22. Tian, B.: Semicond. Sci Technol. 26 (2010) 085023.
23. Kayis, C.: J. Applied Phys. 109 (2011) 084522.
24. Kayis, C.: Proc. SPIE 7939 (2011) 79392F.
25. Eickelkamp, M.: Physica Status Solidi C 8 (2011) 2213.
# 26. Xue, F.: Guti Dianzixue Yanjiu Yu Jinzhan/Research Progress Solid State Electron. 31 (2011) 319.
27. Bi, Zhi-W.: Chinese Phys. Lett. 29 (2012) 028501.
28. Feng, Q.: Chinese Phys. B 21 (2012) 067305.
29. Liu, H.-Y.: IEEE Electron Device Lett. 33 (2012) 997.
30. Kong, Y.-C.: Chinese Phys. Lett. 29 (2012) 057702.
# 31. Pardeshi, H.: J. Semicond. 33 (2012) 124001.
32. Tian B.-L.: Chinese Phys. Lett. 30 (2013) 026101.
33. Seok, O.: Semicond. Sci Technol. 28 (2013) 025001.
34. Liu, X.: J. Applied Phys. 114 (2013) 027003.
35. Liu, H.-Y.: IEEE Trans. Electron Devices 60 (2013) 213.
36. Tapajna, M. .: Japan. J. Applied Phys. 52 (2013) SI08JN08.
# 37. Tian B.-L.: J. Semicond. 34 (2013) 094003.
38. Kubo, T.: Semicond. Sci Technol. 29 (2014) 045004.
39. Ye, D.: J. Phys. D 47 (2014) 255101.
40. Wang, X.: Nano Lett. 14 (2014) 3014.
41. Liu, H.-Y.: IEEE ISEEE 2014. 1-3 (2014) 591.
42. Zhu, J.-J.: IEEE Trans. Electron Dev. 62 (2015) 512.
43. Kubo, T.: Japan. J. Applied Phys. 54 (2015) 020301.
44. Freedsman, J. J.: Applied Phys. Lett. 107 (2015) 103506.
45. Zhou, X. J.: J. Applied Phys. 120 (2016) 125706.
46. Du, J.: Micro & Nano Lett. 11 (2016) 503.
47. Guo, Z.: Applied Phys. Lett. 109 (2016) 062903.
# 48. Hao, Y.: In Nitride Wide Bandgap Semicond. Mater. Electronic Devices. CRC Press 2016. ISBN: 978-149874513-0, pp. 1-368.
49. Takhar, K.: Solid-State Electr. 131 (2017) 39.
50. Zhu, J.: IEEE Trans. Electron Dev. 64 (2017) 840.
51. Lin, Y.-S.: J. Vacuum Sci Technol. B 35 (2017) 011209.
52. Zhu, J.-J.: Mater. Res. Express 4 (2017) 025902.
# 53. Xue, F.: Guti Dianzixue Yanjiu Yu Jinzhan/Res. Progress Solid State Electron. 37 (2017) 221+244.
54. Xing, W.: IEEE Electron Device Lett. 39 (2018) 947.
55. Guo, Z.: Phys. Rev. Applied 11 (2019) 024040.
56. Zhang, H.-S.: IEEE Trans. Electron Dev. 66(2019) 3302.
57. Mohanty, S.S.: J. Micromech. Microengn. 29 (2019) 084001.
58. Mohanty, S.S.: J. Nanoelectr. Optoelectron. 14 (2019) 923.
59. Zhu, J.: Semicond. Sci Technol. 35 (2020) 065017.
60. Verma, M.: Trans. Electric. Electron. Mater. 21 (2020) 427.
61. Zhou, X.: Applied Phys. A 126 (2020) 825.
62. Hwang, J. D.: Mater. Sci Engn. B 266 (2021) 115063.
63. Zhang, J.: Microelectron. J. 112 (2021) 105042.
64. Lee, J.H.: IEEE J. Electron Dev. Soc. 9 (2021) 728.
65. Zhang, S.: IEEE Electron Device Lett. 42 (2021) 1436.
# 66. Xue, F.: Guti Dianzixue Yanjiu Yu Jinzhan/Res. Progress Solid State Electron. 41 (2021) 337.
67. Zhen, Z.X.: Phys. Status Solidi A 219 (2022) 2200010.
68. Cui, P.: Nanomater. 12 (2022) 1718.
69. Cong, Z.Z.: Applied Phys. Lett. 123 (2023) 212104.
70. Hwang, J.D.: Nanotechnol. 35 (2024) 045203.
71. Liu, S.: J. Applied Phys. 135 (2024) 175703.
Čičo, K., Kuzmík, J., Gregušová, D., Stoklas, R., Lalinský, T., Georgakilas, A., Pogany, D., Fröhlich, K., :Optimization and performance of Al2O3/GaN metal-oxide-semiconductor structures. Microelectr. Reliability 47 (2007) 790-793.
1. Nepal, N.: Applied Phys. Express 4 (2011) 055802.
2. Quah, H.J.: IEEE Trans. Electron Devices 59 (2012) 3009.
3. Quah, H.J.: Sci. Advanced Mater. 5 (2013) 1816.
4. Hahn, H.: Japan. J. Applied Phys. 52 (2013) 090204.
5. Quah, H.J.: ACS Applied Mater. Interfaces 5 (2013) 6860.
6. Yang, M.: J. Rare Earths 31 (2013) 395.
# 7. Quah, H.J.: Current Applied Phys. 13 (2013) 1433.
8. Quah, H.J.: Mater. Chem. Phys. 148 (2014) 592.
9. Prasad, C.V.: Applied Phys. A 123 (2017) 279.
10. Goh, K.H.: Mater. Sci Semicond. Process. 68 (2017) 302.
11. Nguyen, H.T.: Materials 13 (2020) 899.
12. Yang, C.: Applied Phys. Lett. 117 (2020) 052105.
13. Gao, S.: Microelectron. Engn. 264 (2022) 111860.
14. Akkaya, A.: Physica B 665 (2023) 415034.
Stoklas, R., Čičo, K., Gregušová, D., Novák, J., Kordoš, P., : Preparation and properties of AlGaN/GaN MOSHFETs with MOCVD Al2O3 as gate oxide. In: ASDAM 2006. Piscataway: IEEE 2006. ISBN: 1-4244-0396-0. P. 249-252.
1. Kong, X.: Chinese Phys. Lett. 29 (2012) 078502.