Hušek, I., Kováč, P., Melišek, T., and Hain, M.: Superconducting joints between MgB2/Ni and MgB2/Nb composite wires, their transport currents and micro-structure, Ceramics Inter. 49 (2023) 11178-11183.
1. Liang, H.: J. Magnesium Alloys 11 (2023) 2217.
2. Sene, F.C.D.: Supercond. 9 (2024) 100083.
3. Patel, D.: J. Magnesium Alloys 12 (2024) 159.
Búran, M., Kováč, P., Kopera, L., and Hušek, I.: Thermal stability of 6-filament MgB2 wire with resistive CuNi sheath cooled by liquid He and water ice, Cryogenics 133 (2023) 103694.
1. Bokes, P.: Applied Thermal Engn. 248 (2024) 123186.
Srivastava, N., Mehrotra, S., Búran, M., Hušek, I., Sharma, D., Kováč, P., and Santra, S.: Interfacial reactions and critical current density of Cu-sheathed Cu-doped MgB2 wire with Ti diffusion barrier, J. Alloys Comp. 966 (2023) 171657.
1. Tolinski, T.: J. Mater. Sci 59 (2024) 16184.
Kováč, P., Berek, D., Melišek, T., Kováč, J., Hušek, I., Búran, M., Lee, D.G., and Choi, J.H.: Influence of filament number and size on the basic properties of in situ made MgB2 wires, Supercond. Sci Technol. 36 (2023) 045014.
1. Wang, Z.K.: Supercond. Sci Technol. 37 (2024) 085017.
Kováč, P., Kopera, L., Berek, D., Hain, M., Melišek, T., Hušek, I., Kováč, J., and Búran, M.: High-current-density Rutherford MgB2 cable sheathed by CuNi30 alloy, Supercond. Sci Technol. 35 (2022) 115003.
1. Godeke, A.: Supercond. Sci Technol. 36 (2023) 113001.
2. Yagai, T.: IEEE Trans. Applied Supercond. 34 (2024) 4500706.
3. Chen, W.W.: Supercond. Sci Technol. 37 (2024) 075005.
Kováč, P., Kopera, L., Melišek, T., Búran, M., Hušek, I., Berek, D., and Kováč, J.: Water ice-cooled MgB2 coil made by wind and react process, Supercond. Sci Technol. 35 (2022) 055001.
1. Inoue, M.: IEEE Trans. Applied Supercond. 33 (2023) 6200104.
Kováč, P., Melišek, T., Kováč, J., Búran, M., Hušek, I., Rindfleisch, M., and Tomsic, M.: DC characterization of advanced fine-filamentary MgB2 superconducting wires, Supercond. Sci Technol. 35 (2022) 055004.
1. Kalsi, S.S.: IEEE Trans. Applied Supercond. 33 (2023) 5201806.
2. Sene, F.C.D.: Supercond. 9 (2024) 100083.
3. Chen, W.W.: Supercond. Sci Technol. 37 (2024) 075005.
Kováč, P., Hušek, I., Hain, M., Kopera, L., Melišek, T., and Berek, D.: Longitudinal uniformity of MgB2 wires made by an internal magnesium diffusion process, Supercond. Sci Technol. 34 (2021) 095007.
1. Yetis, H : Supercond. Sci Technol. 35 (2022) 045012.
2. He, L.J.: Rare Metal Mater. Engn. 52 (2023) 3801.
3. Chen, W.W.: Supercond. Sci Technol. 37 (2024) 075005.
Kováč, P., Kováč, J., Perez, N., Scheiter, J., Búran, M., Kopera, L., Hušek, I., Melišek, T., and Berek, D.: Low‐purity Cu and Al sheathed multi‐core MgB2 wires made by IMD process, Supercond. Sci Technol. 34 (2021) 075010.
1. Liu, H.R.: J. Supercond. Novel Magnet. 35 (2022) 429.
2. He, L.J.: Rare Metal Mater. Engn. 52 (2023) 3801.
Kováč, P., Kopera, L., Hain, M., Martínez, E., Kováč, J., Melišek, T., Berek, D., and Hušek, I.: MgB2 cables made of thin wires manufactured by IMD process, Supercond. Sci Technol. 33 (2020) 085004.
1. Rosova, A.: Applied Phys. A 127 (2021) 152.
2. Shahbazi, M.: IEEE Trans. Applied Supercond. 31 (2021) 6200305.
3. Yagai, T.: IEEE Trans. Applied Supercond. 32 (2022) 4801605.
* 4. Kumakura, H.: J. Cryogen. Supercond. Soc Japan 56 (2021) 317.
Kováč, P., Hušek, I., Pérez, N., Rosová, A., Berek, D., Gelušiaková, B., Kopera, L., Melišek, T., and Nielsch, K.: Structure and properties of barrier-free MgB2 composite wires made by internal magnesium diffusion process, J. Alloys Comp. 829 (2020) 154543.
1. Yetis, H.: Physica B 593 (2020) 412277.
2. Kambe, H.: Applied Phys. Express 14 (2021) 025504.
3. Choi, S.: J. Alloys Comp. 864 (2021) 158867.
4. Liu, H.R.: J. Supercond. Novel Magnet. 35 (2022) 429.
5. Maeda, M.: Ceram. Inter. 48 (2022) 6539.
6. Yetis, H : Supercond. Sci Technol. 35 (2022) 045012.
* 7. Khan, M.R.U.K.: Adv. Mater. Res. 1166 (2021) 1.
8. Ozaki, T.: Cond. Matter 7 (2022) 48.
# 9. Guan, D.: Xiyou Jinshu/Chinese J. Rare Metals 46 (2022) 497.
10. Herbirowo, S.: Inter. J. Technol. 14 (2023) 1570.
11. Sene, F.C.D.: Mater. Today Comm. 38 (2024) 107618.
12. Jung, S.G.: J. Alloys Comp. 995 (2024) 174816.
Santra, S., Grovenor, C.R.M., Speller, S.C., Kováč, P., Kopera, L., and Hušek, I.: Comparison of interfacial and critical current behaviour of Al+Al2O3 sheathed MgB2 wires with Ta and Tidiffusion barriers, J. Alloys Comp. 807 (2019) 151665.
1. Filar, K.: J. Supercond. Novel Magnet. 35 (2022) 1491.
Kopera, L., Kováč, P., Kováč, J., Melišek, T., Hušek, I., and Berek, D.: Small diameter wind and react coil made of anodised Al-sheathed MgB2 wire, Supercond. Sci Technol. 32 (2019) 105003.
1. Tanaka, H.: IEEE Trans. Applied Supercond. 30 (2020) Iss. 4.
2. Rosova, A.: Applied Phys. A 127 (2021) 152.
3. Bryant, B.: IEEE Trans. Applied Supercond. 32 (2022) 4401004.
Kováč, P., Hušek, I., Rosová, A., Melišek, T., Kováč, J., Kopera, L., Scheiter, J., and Haessler, W.: Strong no-barrier SS sheathed MgB2 composite wire, Physica C 560 (2019) 40-44.
1. Karaboga, F.: J. Mater. Sci-Mater. Electron. 31 (2020) 7141.
2. Liu, H.R.: J. Supercond. Novel Magnet. 35 (2022) 429.
3. Yetis, H : Supercond. Sci Technol. 35 (2022) 045012.
# 4. Guan, D.: Xiyou Jinshu/Chinese J. Rare Metals 46 (2022) 497.
Kováč, P., Hušek, I., Kulich, M., Kováč, J., Melišek, T., Kopera, L., Perez, N., Haessler, W., Balog, M., Krížik, P., and Berek, D.: Lightweight MgB2 wires with a high temperature aluminum sheath made of variable purity Al powder and Al2O3 content, Supercond. Sci Technol. 31 (2018) 085003.
1. Durmus, H.: J. Mater. Sci-Mater. Electron. 33 (2022) 17079.
Kováč, P., Hušek, I., Kulich, M., Kováč, J., Melišek, T., Kopera, L., and Pachla, W.: Multi-core MgB2 wire with a Ti barrier and a reinforced Al+Al2O3 sheath, Supercond. Sci Technol. 31 (2018) 095006.
1. Musenich, R.: IEEE Trans. Applied Supercond. 30 (2020) 4500305.
2. Battiston, R.: Experiment. Astron. 51 (2021) SI1299.
Balog, M., Rosová, A., Szundiová, B., Orovčík, Ľ., Krížik, P., Švec, P.Jr., Kulich, M., Kopera, L., Kováč, P., Hušek, I., and Ibrahim, A.M.H.: HITEMAL-an outer sheath material for MgB2 superconductor wires: The effect of annealing at 595–655 °C on the microstructure and properties, Mater. Design 157 (2018) 12–23.
1. Karaboga, F.: J. Mater. Sci-Mater. Electron. 31 (2020) 7141.
# 2. Prokhasko, L.: Inter. J. Adv. Sci Technol. 29 (2020) 2668.
# 3. Prokhasko, L.S.: IOP Conf. Ser.: Earth Environ. Sci 839 (2021) 052033.
4. Gao, T.: Mater. Design 215 (2022) 110432.
5. Sadeghi, B.: Mater. Character. 188 ( 2022) 111913.
6. Gao, T.: J. Alloys Comp. 920 (2022) 165985.
7. Gao, T.: Composit. Comm. 40 (2023) 101629.
8. Herbirowo, S.: Inter. J. Technol. 14 (2023) 1570.
Rosová, A., Hušek, I., Kulich, M., Melišek, T., Kováč, P., Dobročka, E., Kopera, L., Scheiter, J., and Haessler, W.: Microstructure of undoped and C-doped MgB2 wires prepared by an internal magnesium diffusion technique using different B powders, J. Alloys Comp. 764 (2018) 437e445.
1. Maeda, M.: J. Alloys Comp. 787 (2019) 1265.
2. Iida, K.: Supercond. Sci Technol. 33 (2020) 043001.
3. Olatunji, S.O.: Comput. Mater. Sci 192 (2021) 110392.
4. Guan, D.D.: Supercond. Sci Technol. 34 (2021) 115007.
# 5. Guan, D.: Xiyou Jinshu/Chinese J. Rare Metals 46 (2022) 497.
Kováč, P., Hušek, I., Rosová, A., Kulich, M., Kováč, J., Melišek, T., Kopera, L., Balog, M., and Krížik, P.: Ultra-lightweight superconducting wire based on Mg, B, Ti and Al, Sci Reports 8 (2018) 11229.
1. Prikhna, T.A.: IEEE Trans. Applied Supercond. 29 (2019) 6200905.
2. Patel, D.: Scripta Mater. 178 (2020) 198.
3. Fujii, H.: Physica C 576 (2020) 1353704.
4. Bovone, G.: Supercond. Sci Technol. 33 (2020) 125003.
5. Patel, D.: ACS Applied Mater. Interf. 13 (2021) 3349.
6. Prikhna, T.: IEEE Trans. Applied Supercond. 31 (2021) 8000705.
# 7. Fujii, H.: Physica C 591 (2021) 1353972.
8. Kapolka, M.: Sci Rep. 12 (2022) 7030.
9. Patel, D.: ACS Applied Mater. Interf. 14 (2022) 3418.
10. Fujii, H.: Physica C 603 (2022) 1354172.
# 11. Guan, D.: Xiyou Jinshu/Chinese J. Rare Metals 46 (2022) 497.
12. Chen, W.W.: Supercond. Sci Technol. 37 (2024) 075005.
13. Miryala, M.: J. Magnesium Alloys 12 (2024) 1257.
Kováč, P., Kopera, L., Kováč, J., Hain, M., Melišek, T., Kulich, M., and Hušek, I.: Rutherford cable made of internal magnesium diffusion MgB2 wires sheathed with Al-Al2O3 particulate metal matrix composite, Supercond. Sci Technol. 31 (2018) 015015.
1. Konstantopoulou, K.: Supercond. Sci Technol. 32 (2019) 085003.
2. Wang, D.Y.: J. Supercond. Novel Magnetism 33 (2020) 2657.
# 3. Sharma, R.G.: In: Superconductivity. Springer Ser. Mater. Sci 214 (2021) 277.
# 4. Guan, D.: Xiyou Jinshu/Chinese J. Rare Metals 46 (2022) 497.
Hušek, I., Kováč, P., Melišek, T., Kulich, M., Rosová, A., Kopera, L., and Szundiová, B.: Superconducting MgB2 wires with vanadium diffusion barrier, Supercond. Sci Technol. 30 (2017) 105008.
1. Ahmad, I.: IEEE Trans. Applied Supercond. 30 (2020) Iss. 8.
2. Wang, Z.K.: Supercond. Sci Technol. 37 (2024) 085017.
Kováč, P., Balog, M., Hušek, I., Kopera, L., Krížik, P., Rosová, A., Kováč, J., Kulich, M., and Čaplovičová, M.: Properties of near- and sub-micrometre Al matrix composites strengthened with nano-scale in-situ Al2O3 aimed for low temperature applications, Cryogenics 87 (2017) 58–65.
1. Kannan, C.: Mater. Today-Proc. 22 (2020) 1507.
2. Deschamps, I.S.: Metals 12 (2022) 2073.
# 3. Guan, D.: Xiyou Jinshu/Chinese J. Rare Metals 46 (2022) 497.
4. Kovacs, C.J.: IEEE Trans. Applied Supercond. 33 (2023) 3601206.
Kováč, P., Hušek, I., Melišek, T., Kulich, M., Rosová, A., Kováč, J., Kopera, L., Balog, M., Krížik, P., and Orovčík, Ľ.: Lightweight Al-stabilized MgB2 conductor made by the IMD process, Supercond. Sci Technol. 30 (2017) 115001.
1. Fujii, H.: Physica C 576 (2020) 1353704.
2. Zhang, J.: Acta Microscop. 29 (2020) 1695.
# 3. Fujii, H.: Physica C 591 (2021) 1353972.
# 4. Guan, D.: Xiyou Jinshu/Chinese J. Rare Metals 46 (2022) 497.
Kováč, P., Kulich, M., Kopera, L., Melišek, T., Kováč, J., and Hušek, I.: Filamentary MgB2 wires manufactured by different processes subjected to tensile loading and unloading, Supercond. Sci Technol. 30 (2017) 065006.
1. Nosov, A.A.: IEEE Trans. Applied Supercond. 29 (2019) 6200705.
2. Yoo, B.: Metals Mater. Inter. 25 (2019) 1467.
3. Wang, D.: IEEE Trans. Applied Supercond. 30 (2020) Iss. 4.
4. Tanaka, H.: IEEE Trans. Applied Supercond. 30 (2020) Iss. 4.
# 5. Guan, D.: Xiyou Jinshu/Chinese J. Rare Metals 46 (2022) 497.
6. Wang, Z.K.: Supercond. Sci Technol. 37 (2024) 085017.
Kopera, L., Kováč, P., Kulich, M., Melišek, T., Rindfleisch, M., Yue, J., and Hušek, I.: Critical currents of Rutheford MgB2 cables compacted by two-axial rolling, Supercond. Sci Technol. 30 (2017) 015002.
1. Hoang, T.-K.: IEEE Trans. Applied Supercond. 28 (2018) 5206705.
2. Mizuno, S.: IEEE Trans. Applied Supercond. 28 (2018) 4602505.
3. Yagai, T.: Cryogenics 96 (2018) 75.
4. Yagai, T.: J. Phys.: Conf. Ser. 1054 (2018) 012080.
5. Jimbo, M.: IEEE Trans. Applied Supercond. 29 (2019) 8003305.
6. Yagai, T.: IEEE Trans. Applied Supercond. 29 (2019) 4602705.
7. Wang, D.: IEEE Trans. Applied Supercond. 30 (2020) Iss. 4.
8. Xue, S.: IEEE Trans. Applied Supercond. 31 (2021) Iss. 2.
9. Yagai, T.: IEEE Trans. Applied Supercond. 32 (2022) 4801605.
Kováč, P., Hušek, I., Kulich, M., Melišek, T., Kováč, J., and Kopera, L.: MgB2 wires with Ti and NbTi barrier made by IMD process, Cryogenics 79 (2016) 74-78.
1. Shahbazi, M.: IEEE Trans. Applied Supercond. 31 (2021) 6200305.
2. Liu, H.R.: J. Supercond. Novel Magnetism 35 (2022) 429.
# 3. Guan, D.: Xiyou Jinshu/Chinese J. Rare Metals 46 (2022) 497.
Kováč, P., Hušek, I., Kováč, J., Melišek, T., Kulich, M., and Kopera, L.: Filamentary MgB2 wires with low magnetization AC losses, IEEE Trans. Applied Supercond. 26 (2016) 6200705.
1. Xi, J.: IEEE Trans. Applied Supercond. 29 (2019) 8201205.
2. Nikulshin, Y.: Supercond. Sci Technol. 32 (2019) 075007.
3. Xue, S.: IEEE Trans. Applied Supercond. 31 (2021) Iss. 1.
4. Kapolka, M.: Sci Rep. 12 (2022) 7030.
5. Kapolka, M.: IEEE Trans. Applied Supercond. 32 (2022) 6200305.
Kováč, P., Hušek, I., Melišek, T., Kulich, M., and Kopera, L.: Bending strain tolerance of a MgB2 superconducting wires, Supercond. Sci Technol. 29 (2016) 045002.
1. Tanaka, H.: IEEE Trans. Applied Supercond. 28 (2018) 8400605.
2. Yoo, B.: IEEE Trans. Applied Supercond. 28 (2018) 8400806.
3. Sosnowski, J.: Acta Phys. Polonica A 134 (2018) 1194.
4. Yoo, B.: Metals Mater. Inter. 25 (2019) 1467.
5. Corduan, M.: IEEE Trans. Applied Supercond. 30 (2020) Iss. 2.
6. Bagni, T.: Sci Rep. 11 (2021) 7767.
7. Avci, D.: J. Supercond. Novel Magnetism 34 (2021) 2121.
8. Yetis, H.: Supercond. Sci Technol. 35 (2022) 045012.
9. Kodama, M.: Supercond. Sci Technol. 35 (2022) 094007.
# 10. Guan, D.: Xiyou Jinshu/Chinese J. Rare Metals 46 (2022) 497.
11. Iwanaka, T.: Japan. J. Applied Phys. 62 (2023) 025501.
# 12. Pyon S.: J. Phys.: Conf. Ser. 2323 (2022) 012020.
13. Chen, W.W.: Supercond. Sci Technol. 37 (2024) 075005.
Kováč, P., Hušek, I., Pachla, W., Melišek, T., Kulich, M., Rosová, A., and Kopera, Ľ.: Effect of cold isostatic pressing on the transport current of filamentary of MgB2 wire made by the IMD process, Supercond. Sci Technol. 26 (2016) 075004.
1. Xu, D.: IEEE Trans. Applied Supercond. 27 (2017) 6200304.
2. Shimada, Y.: J. Alloys Compounds 740 (2018) 305.
3. Wang, Q.: Inter. J. Modern Phys. B 34 (2020) 2050012.
4. Wan, F.: Scripta Materialia 239 (2024) 115784.
Kováč, P., Hušek, I., Melišek, T., Kopera, Ľ., Kulich, M., : Fast creation of dense MgB2 phase in wires made by IMD process,. Supercond. Sci Technol. 26 (2016) 10LT01.
1. Al Hossain, Md.S.: Supercond. Sci Technol. 30 (2017) 010501.
2. Qin, F.: J. Mater. Sci-Mater. Electron. 28 (2017) 15625.
3. Cai, Q.: J. Mater. Sci-Mater. Electron. 29(2018) 10323.
4. Shimada, Y.: J. Alloys Compounds 740 (2018) 305.
5. Patel, D.: J. Mater. Chem. C 8 (2020) 2507.
6. Zhang, D.: IOP Conf. Ser.-Mater. Sci Engn. 756 (2020) 012019.
7. Rosova, A.: Applied Phys. A 127 (2021) 152.
Brunner, B., Windbichler, A., Reissner, M., Kováč, P., and Hušek, I.: Comparison of critical current density and pinning behaviour of mono-core MgB2 wires prepared by different method, J. Supercond. Novel Magn. 28 (2015) 443-446.
1. Maeda, M.: Ceram. Inter. 48 (2022) 6539.
Kováč, P., Kopera, L., Melišek, T., Kulich, M., Hušek, I., Lin, H., Yao, C., Zhang, X., and Ma, Y.: Electromechanical properties of iron and silver sheathed Sr0.6K0.4Fe2As2 tapes, Supercond. Sci Technol. 28 (2015) 035007.
1. Avronsart, J.: IEEE Trans. Applied Supercond. 28 (2018) 6200305.
2. Togano, K.: J. Japan Inst. Metals Mater. 83 (2019) SI346.
3. Wang, C.: IEEE Trans. Applied Supercond. 30 (2020) 4000205.
# 4. Sharma, R.G.: In: Superconductivity. Springer Ser. Mater. Sci 214 (2021) 313.
5. Qian, X.X.: Physica C 616 (2024) 1354428.
Kováč, J., Šouc, J., Kováč, P., and Hušek, I.: Magnetization AC losses in MgB2 wires made by IMD process, Supercond. Sci Technol. 28 (2015) 015013.
1. Ye, S.: Supercond. Sci Technol. 29 (2016) 113004.
2. Hou Y.: Rare Metal Mater. Engn. 47 (2018) 1406.
3. Nikulshin, Y.: IEEE Trans. Applied Supercond. 28 (2018) 8201504.
4. Nikulshin, Y.: IEEE Trans. Applied Supercond. 28 (2018) 6200906.
5. Xi, J.: IEEE Trans. Applied Supercond. 29 (2019) 8201205.
6. Nikulshin, Y.: Rev. Sci Instrum. 90 (2019) 065111.
7. Kapolka, M.: Sci Rep. 12 (2022) 7030.
8. Kapolka, M.: IEEE Trans. Applied Supercond. 32 (2022) 6200305.
9. Komagome, T.: IEEE Trans. Applied Supercond. 32 (2022) 5901005.
# 10. Guan, D.: Xiyou Jinshu/Chinese J. Rare Metals 46 (2022) 497.
11. Avci, D.: Supercond. Sci Technol. 36 (2023) 075004.
12. He, L.J.: Rare Metal Mater. Engn. 52 (2023) 3801.
Kováč, J., Šouc, J., Kováč, P., and Hušek, I.: AC losses of single-core MgB2 wires with different metallic sheaths, Physica C 519 (2015) 95-99.
1. Nikulshin, Y.: IEEE Trans. Applied Supercond. 28 (2018) 8201504.
2. Nikulshin, Y.: IEEE Trans. Applied Supercond. 28 (2018) 6200906.
3. Law, Y-M.: J. Comput. Phys. 378 (2019) 591.
4. Xi, J.: IEEE Trans. Applied Supercond. 29 (2019) 8201205.
5. Nikulshin, Y.: Supercond. Sci Technol. 32 (2019) 075007.
6. Yetis, H.: IEEE Trans. Applied Supercond. 30 (2020) Iss. 5.
7. Balachandran, T.: IEEE Trans. Applied Supercond. 32 (2022) 4702407.
8. Ding, X.: IEEE Trans. Applied Supercond. 34 (2024) 5901705.
Rosová, A., Kováč, P., Hušek, I., Brunner, B., Dobročka, E., : Microstructure of MgB2 superconducting wire prepared by internal magnesium diffusion and in-situ powder-in-tube processes – Secondary phase intergrain nanolayers as an oxygen content indicator. Physica C 516 (2015) 1-9.
1. Wang, D.: Supercond. Sci Technol. 28 (2015) 105013.
2. Mackinnon, I.D.R. .: Supercond. Sci Technol. 30 (2017) 055004.
# 3. Herbirowo, S.: Mater. Sci Forum 929 (2018) 27.
Rosová, A., Hušek, I., Kováč, P., Dobročka, E., Melišek, T., : Microstructure of MgB2 superconducting wire prepared by internal magnesium diffusion process. J. Alloys Comp. 619 (2015) 726-732.
1. Ye, S.J.: IEEE Trans. Applied Supercond. 25 (2015) 6200807.
2. Ye, S.: Supercond. Sci Technol. 29 (2016) 113004.
3. Yetis, H.: Physica B 593 (2020) 412277.
Kováč, P., Hušek, I., Rosová, A., Kulich, M., Melišek, T., Kopera, Ľ., Brunner, B., : Properties of MgB2 wires made by internal magnesium diffusion into different boron powders. Supercond. Sci Technol. 28 (2015) 095014.
1. Xu, D.: Supercond. Sci Technol. 29 (2016) 045009.
2. Liu, Y.: J. Mater. Chem. 4 (2016) 9469.
3. Ye, S.: Supercond. Sci Technol. 29 (2016) 113004.
4. Xu, D.: Supercond. Sci Technol. 29 (2016) 105019.
5. Xu, D.: IEEE Trans. Applied Supercond. 27 (2017) 6200304.
6. Liu, Y.: J. Alloys Compounds 697 (2017) 37.
7. Karaboga, F.: IEEE Trans. Applied Supercond. 28 (2018) 6200805.
8. Savaskan, B.: J. Alloys Comp. 961 (2023) 170893.
Kováč, P., Kopera, L., Melišek, T., and Hušek, I.: Electro-mechanical behaviour of in situ W add MgB2 wire, Cryogenics 60 (2014) 5-8.
1. Karaboga, F.: Mater. Sci Engn. A 721 (2018) 89.
Hušek, I., Kováč, P., Rosová, A., Melišek, T., Pachla, W., Hain, M., : Advanced MgB2 wire made by internal magnesium diffusion process. J. Alloys Comp. 588 (2014) 366-369.
1. Maeda, M.: J. Alloys Compounds 636 (2015) 29.
* 2. Kováč, J.: In MgB2 superconducting wires. Ed. R. Flückiger. New Jersey: World Sci Publ. 2016. ISBN978-981-4725-58-3. P. 419.
3. Liu, Y.: J. Mater. Chem. 4 (2016) 9469.
4. Xu, D.: IEEE Trans. Applied Supercond. 27 (2017) 6200304.
5. Liu, Y.: J. Alloys Compounds 697 (2017) 37.
6. Akdogan, M.: J. Alloys Compounds 702 (2017) 399.
7. Karaboga, F.: IEEE Trans. Applied Supercond. 28 (2018) 6200805.
8. Yetis, H.: Physica B 593 (2020) 412277.
9. Avci, D.: Supercond. Sci Technol. 36 (2023) 075004.
Brunner, B., Kováč, P., Reissner, M., Hušek, I., Melišek, T., and Pardo, E.: Critical current density and pinning behaviour of mono-core MgB2 wires prepared by internal magnesium diffusion and in-situ powder-in-tube method, Physica C 505 (2014) 39-43.
1. Ye, S.J.: IEEE Trans. Applied Supercond. 25 (2015) 6200807.
2. Xu, D.: Supercond. Sci Technol. 29 (2016) 045009.
3. Liu, Y.: J. Mater. Chem. 4 (2016) 9469.
4. Ye, S.: Supercond. Sci Technol. 29 (2016) 113004.
5. Liu, Y.: J. Alloys Compounds 697 (2017) 37.
6. Glowacki, B.A.: ELMECO & AOS 2017.
7. Li, W.: ACS Applied Mater. Interfaces 11 (2019) 10818.
8. Glowacki, B.A.: Acta Phys. Polonica A 135 (2019) 7.
9. Maeda, M.: Ceram. Inter. 48 (2022) 6539.
10. Chen, W.W.: Supercond. Sci Technol. 37 (2024) 075005.
Kováč, P., Hušek, I., Melišek, T., Kopera, Ľ., and Kováč, J.: Critical currents, Ic-anisotropy and stress tolerance of MgB2 wires made by internal magnesium diffusion, Supercond. Sci Technol. 27 (2014) 065003.
1. Jarvela, J.: IEEE Trans. Applied Supercond. 25 (2015) 8200308.
2. Li, Y.: J. Applied Phys. 117 (2015) 213912.
3. Yang, Y.: Physica C 519 (2015) 118.
# 4. Ye, S.J.: IEEE Trans. Applied Supercond. 25 (2015) 6200807.
5. Wang, D.: Supercond. Sci Technol. 29 (2016) 065003.
6. Hagner, M.: IEEE Trans. Applied Supercond. 26 (2016) 6200305.
* 7. Giunchi, G.: In MgB2 superconducting wires. Ed. R. Flückiger. New Jersey: World Sci Publ. 2016. ISBN 978-981-4725-58-3. P. 159.
* 8. Collings, E.W.: In MgB2 superconducting wires. Ed. R. Flückiger. New Jersey: World Sci Publ. 2016. ISBN 978-981-4725-58-3. P. 341.
9. Liu, Y.: J. Mater. Chem. 4 (2016) 9469.
10. Ye, S.: Supercond. Sci Technol. 29 (2016) 113004.
11. Liu, Y.: J. Alloys Compounds 697 (2017) 37.
12. Du, S.: Metals 7 (2017) 78.
13. Cai, Q.: J. Mater. Sci-Mater. Electron. 29(2018) 10323.
14. Liu H.: Rare Metal Mater. Engn. 47 (2018) 1020.
15. Shao, H.: Rare Metal Mater. Engn. 47 (2018) 2976.
# 16. Guan, D.: Xiyou Jinshu/Chinese J. Rare Metals 46 (2022) 497.
Kováč, P., Kopera, Ľ., Melišek, T., Rindfleisch, M., Haessler, W., Hušek, I., : Behaviour of filamentary MgB2 wires subjected to tensile stress at 4.2 K. Supercond. Sci Technol. 26 (2013) 105028.
1. Xin, C.: IEEE Trans. Applied Supercond. 26 (2016) 8401104.
2. Al Amin, A.: Supercond. Sci Technol. 29 (2016) 055008.
* 3. Schlachter, S.: In MgB2 superconducting wires. Ed. R. Flückiger. New Jersey: World Sci Publ. 2016. ISBN 978-981-4725-58-3. P. 549.
4. Deissler, R.J.: Supercond. Sci Technol. 30 (2017) 025021.
5. Lenoir, G .: IEEE Trans. Applied Supercond. 27 (2017) 8400105.
# 6. Amin, A.A.: IEEE Trans. Applied Supercond. 27 (2017) 7820118.
7. Tanaka, H.: IEEE Trans. Applied Supercond. 28 (2018) 8400605.
8. Avronsart, J.: IEEE Trans. Applied Supercond. 28 (2018) 6200305.
9. Poole, C.: Cryogenics 100 (2019) 18.
10. Yoo, B.: Metals Mater. Inter. 25 (2019) 1467.
11. Diaz, M.A.: IEEE Trans. Applied Supercond. 30 (2020) Iss. 4.
12. Wang, D.: IEEE Trans. Applied Supercond. 30 (2020) Iss. 4.
13. Kodama, M.: Supercond. Sci Technol. 35 (2022) 094007.
Rosová, A., Kováč, P., Hušek, I., Kopera, Ľ., : Composition changes in thin-filament MgB2/Ti/GlidCop® wires heat treated at variable periods,. J. Alloys Compounds 572 (2013) 25-30.
1. AlZayed, N.S.: J. Alloys Comp. 594 (2014) 60.
Kováč, J., Šouc, J., Kováč, P., Hušek, I., Gömöry, F., : Experimental study of magnetization AC loss in MgB2 wires and cables with non-magnetic sheath. Physica C 495 (2013) 182-186.
1. Magnusson, N.: Physica C 506 (2014) SI133.
2. Magnusson, N.: Supercond. Sci Technol. 27 (2014) 105003.
3. Xi, J.: IEEE Trans. Applied Supercond. 29 (2019) 8201205.
# 4. Sharma, R.G.: In: Superconductivity. Springer Ser. Mater. Sci 214 (2021) 277.
5. Kapolka, M.: IEEE Trans. Applied Supercond. 32 (2022) 6200305.
6. Komagome, T.: IEEE Trans. Applied Supercond. 32 (2022) 5901005.
7. Balachandran, T.: IEEE Trans. Applied Supercond. 33 (2023) 5901106.
Kováč, P., Hušek, I., Melišek, T., Kopera, Ľ., Polák, M., : Filamentary MgB2 superconductors with titanium barriers. J. Supercond. Novel Magnet. 26 (2013) 2109-2114.
1. Magnusson, N.: Supercond. Sci Technol. 27 (2014) 105003.
2. Karaboga, F.: J. Mater. Sci-Mater. Electron. 31 (2020) 7141.
3. Kapolka, M.: IEEE Trans. Applied Supercond. 32 (2022) 6200305.
Kováč, P., Hušek, I., Kopera, Ľ., Melišek, T., Rosová, A., and Dobročka, E.: Properties of in situ made MgB2 in Nb or Ti sheath, Supercond. Sci Technol. 26 (2013) 025007.
1. Li, G.Z.: Supercond. Sci Technol. 26 (2013) 095007.
2. Li, G.: IEEE Trans. Applied Supercond. 24 (2014) 6200105.
3. Sandu, V .: Supercond. Sci Technol. 29 (2016) 065012.
4. Burdusel, M.: Univ. Politeh. Bucharest Sci Bull. Ser. C 79 (2017) 155.
5. Abdyukhanov, I.: IEEE Trans. Applied Supercond. 28 (2018) 6200504.
6. Aldica, G.: J. Supercond. Novel Magnetism 31 (2018) 3423.
7. Ahmad, I.: Physica B 603 (2021) 412675.
8. He, Y.X.: IEEE Trans. Applied Supercond. 32 (2022) 6200105.
9. Wang, Z.K.: Supercond. Sci Technol. 37 (2024) 085017.
Kopera, Ľ., Kováč, P., Hušek, I., and Melišek, T.: Rutherford cable made of single-core MgB2 wires, Supercond. Sci Technol. 26 (2013) 125007.
# 1. Wesche, R.: Physical Properties of High-Temp. Supercond. Wiley & Sons, Ltd: 2015. ISBN: 978-9971-5-0683-4.
2. Morandi, A.: Supercond. Sci Technol. 29 (2016) 015014.
3. Morandi, A.: IEEE Trans. Applied Supercond. 26 (2016) 0604007.
* 4. Schlachter, S.: In MgB2 superconducting wires. Ed. R. Flückiger. New Jersey: World Sci Publ. 2016. ISBN 978-981-4725-58-3. P. 549.
5. Pan, X.F.: IEEE Trans. Applied Supercond. 27 (2017) 6201005.
6. Kutukcu, M.N.: IEEE Trans. Applied Supercond. 28 (2018) 6200704.
7. Yagai, T.: Cryogenics 96 (2018) 75.
7. Konstantopoulou, K.: Supercond. Sci Technol. 32 (2019) 085003.
8. Jimbo, M.: IEEE Trans. Applied Supercond. 29 (2019) 8003305.
10. Wang, D.: IEEE Trans. Applied Supercond. 30 (2020) Iss. 4.
# 11. Sharma, R.G.: In: Superconductivity. Springer Ser. Mater. Sci 214 (2021) 277.
Kopera, Ľ., Kováč, P., Hušek, I., : Calculated and measured normal state resistivity of 19-filament MgB2/Ti/Cu/stainless steel wire. Supercond. Sci Technol. 25 (2012) 025021.
1. Zhou, C.: Supercond. Sci Technol. 26 (2013) 025002.
2. Shahbazi, M.: IEEE Trans. Applied Supercond. 31 (2021) Iss. 5.
3. Ahmad, I.: Physica B 603 (2021) 412675.
4. He, Y.: IEEE Trans. Applied Supercond. 32 (2022) 6200105.
5. Tsapleva, A.S.: Phys. Metals Metall. 123 (2022) 839.
Kováč, P., Hušek, I., Melišek, T., : Improved current density of filamentary MgB2 wire by two-stage formation. Physica C 475 (2012) 43-45. (APVV 0495-10).
1. Kulich, M.: Supercond. Sci Technol. 26 (2013) 105019.
# 2. Yan, G.: Materials China 32 (2013) 550.
3. Akdogan, M.: J. Alloys Compounds 702 (2017) 399.
Kováč, P., Melišek, T., Kopera, Ľ., Kováč, J., Hušek, I., : Selected properties of GlidCop® sheathed MgB2 wires. Supercond. Sci Technol. 25 (2012) 095008.
# 1. Yan, G.: Materials China 32 (2013) 550.
* 2. Haessler, W.: In MgB2 superconducting wires. Ed. R. Flückiger. New Jersey: World Sci Publ. 2016. ISBN 978-981-4725-58-3. P. 271.
Polák, M., Demenčík, E., Hušek, I., Kopera, Ľ., Kováč, P., Mozola, P., Takács, S., : AC losses and transverse resistivity in filamentary MgB2 tape with Ti barriers. Physica C 471 (2011) 389-394.
1. Meerovich, V.: Mater. Sci Forum 721 (2012) 27.
2. Zhou, C.: Supercond. Sci Technol. 26 (2013) 025002.
3. Magnusson, N.: Supercond. Sci Technol. 27 (2014) 105003.
4. Poole, C.: Supercond. Sci Technol. 30 (2017) 105005.
5. Poole, C.: IEEE Trans. Applied Supercond. 27 (2017) 4700605.
6. Xi, J.: IEEE Trans. Applied Supercond. 29 (2019) 8201205.
# 7. Abdel-Salam, M.: MEPCON 2019, pp. 484.
8. Abdel-Salam, M.: J. Energy Storage 30 (2020) 101461.
9. Kapolka, M.: Sci Rep. 12 (2022) 7030.
10. Kapolka, M.: IEEE Trans. Applied Supercond. 32 (2022) 6200305.
Kováč, P., Hušek, I., Pachla, W., Kulczyk, M., Melišek, T., Dvorák, T., : As-deformed filament’s density and transport currents of MgB2/Ti/Glidcop wire. J. Alloys Compounds 509 (2011) 8783-8787.
1. Wozniak, M.: Supercond. Sci Technol. 27 (2014) 035008.
* 2. Kováč, J.: In MgB2 superconducting wires. Ed. R. Flückiger. New Jersey: World Sci Publ. 2016. ISBN 978-981-4725-58-3. P. 419.
3. Liu, D.: J. Supercond. Novel Magnet. 30 (2017) 1757.
4. Karaboga, F.: Mater. Sci Engn. A 721 (2018) 89.
5. Herbirowo, S.: Inter. J. Technol. 14 (2023) 1570.
6. Lee, D.G.: IEEE Trans. Applied Supercond. 34 (2024) 6200505.
Kováč, P., Hušek, I., Melišek, T., Kopera, Ľ., : Current densities of thin filament MgB2/Ti/GlidCop® wire. Supercond. Sci Technol. 24 (2011) 105006.
1. Giunchi, G.: IEEE Trans. Applied Supercond. 23 (2013) 6200605.
2. Vignolo, M.: Supercond. Sci Technol. 26 (2013) 105022.
3. Vignolo, M.: Supercond. Sci Technol. 27 (2014) 065007.
* 4. Schlachter, S.: In MgB2 superconducting wires. Ed. R. Flückiger. New Jersey: World Sci Publ. 2016. ISBN 978-981-4725-58-3. P. 549.
# 5. Wang, D.: Xiyou Jinshu/Chin. J. Rare Metals 41 (2017) 445.
6. Shahbazi, M.: IEEE Trans. Applied Supercond. 31 (2021) 6200305.
7. He, Y.X.: IEEE Trans. Applied Supercond. 32 (2022) 6200105.
Kováč, P., Hušek, I., Melišek, T., Kopera, Ľ., : Filamentary MgB2 wire twisted before and after heat treatment. Supercond. Sci Technol. 24 (2011) 115006.
# 1. Yan, G.: Materials China 32 (2013) 550.
2. Magnusson, N.: Supercond. Sci Technol. 27 (2014) 105003.
3. Yang, Y.: Physica C 519 (2015) 118.
* 4. Kováč, J.: In MgB2 superconducting wires. Ed. R. Flückiger. New Jersey: World Sci Publ. 2016. ISBN 978-981-4725-58-3. P. 419.
5. Wan, F.: IEEE Trans. Applied Supercond. 27 (2017) 6200105.
6. Liu, D.: J. Supercond. Novel Magnet. 30 (2017) 1757.
7. Wang, D.Y.: J. Supercond. Novel Magnet. 33 (2020) 2657.
Rosová, A., Kováč, P., Hušek, I., and Kopera, L.: EDX and ion beam treatment studies of filamentary in situ MgB2 wires with Ti barrier, J. Alloys Compounds 509 (2011) 7961-7967.
1. Shahbazi, M.: IEEE Trans. Applied Supercond. 31 (2021) 6200305.
Kováč, P., Martinez, E., Melišek, T., Kopera, Ľ., Hušek, I., : Stability of multi-core MgB2/Ti/Cu/SS wires. Cryogenics 51 (2011) 16-20.
1. Zhou, C.: Supercond. Sci Technol. 26 (2013) 025002.
2. Zhou, C.: Supercond. Sci Technol. 27 (2014) 075002.
3. Spurrell, J.: IEEE Trans. Applied Supercond. 25 (2015) 6918426.
Hušek, I., Kováč, P., Melišek, T., Kopera, Ľ., : Thermally stabilized MgB2 composite wires with different barriers. Cryogenics 51 (2011) 550-554.
1. Rodrigues, D.: IEEE Trans. Applied Supercond. 25 (2015) 6200705.
2. Shahbazi, M.: IEEE Trans. Applied Supercond. 31 (2021) 6200305.
3. Tsapleva, A.S.: Phys. Metals Metall. 123 (2022) 839.
4. Qiao, Y.K.: Supercond. 8 (2023) 100072.
Hušek, I. and Kováč, P.: Mechanical properties, interface reactions and transport current densities of multi-core MgB2/Ti/Cu/SS wire, Supercond. Sci Technol. 23 (2010) 075012.
1. Maeda, M.: Ceramics Inter. 46 (2020) 21752.
2. Shahbazi, M.: IEEE Trans. Applied Supercond. 31 (2021) 6200305.
Kováč, P., Hušek, I., Melišek, T., Kopera, Ľ., and Reissner, M.: Cu stabilized MgB2 composite wire with an NbTi barrier, Supercond. Sci Technol. 23 (2010) 025014.
1. Togano, K.: Supercond. Sci Technol. 23 (2010) 085002.
2. Kario, A.: Supercond. Sci Technol. 23 (2010) 115007.
3. Shimada, Y.: IEEE Trans. Applied Supercond. 21 (2011) 2668.
4. Sun, Y.Y.: Physica C 477 (2012) 56.
5. Sun, Y.Y.: J. Supercond. Novel Magnetism 25 (2012) 943.
# 6. Sun, Y.: Mater. Sci Forum 745-746 (2013) 173.
7. Mizuno, S.: IEEE Trans. Applied Supercond. 28 (2018) 4602505.
# 8. Yagai, T: Cryogenics 96 (2018) 75.
9. Yagai, T.: J. Phys.: Conf. Ser. 1054 (2018) 012080.
10. Ahmad, I.: IEEE Trans. Applied Supercond. 30 (2020) Iss. 8.
11. Hira, M.: J. Phys.: Conf. Ser. 1590 (2020) 012058.
12. Kodama, M.: Supercond. Sci Technol. 34 (2021) 074003.
13. Tsapleva, A.S.: Phys. Metals Metall. 123 (2022) 839.
Viljamaa, J., Kováč, P., Hušek, I., Melišek, T., Štrbik, V., Dobročka, E., : Effect of fabrication route on density and connectivity of MgB2 filaments J. Phys.: Conf. Series 234 (2010) 022041.
* 1. Kováč, J.: In MgB2 superconducting wires. Ed. R. Flückiger. New Jersey: World Sci Publ. 2016. ISBN 978-981-4725-58-3. P. 419.
# 2. Wang, D.: Xiyou Jinshu/Chin. J. Rare Metals 41 (2017) 445.
3. Luo, W.: Supercond. Sci Technol. 32 (2019) 085006.
Kováč, P., Hušek, I., Kulich, M., Hušeková, K., Melišek, T., and Dobročka, E.: Effects influencing the grain connectivity in ex-situ MgB2 wires, Physica C 470 (2010) 340-344.
1. Yucel, E.: J. Mater. Sci-Mater. Electron. 23 (2012) 1284.
2. Yakinci, M. E.: Cryogenics 52 (2012) SI749.
3. Akamaru, S.: Mater. Trans. 54 (2013) 2258.
4. Guo, Z.-C.: Acta Phys. Sinica 63 (2014) 067401.
5. Tan, K.Y.: J. Mater. Sci-Mater. Electron. 28(2017) 13391.
6. Sarno da Silva, L.B.: IEEE Trans. Applied Supercond. 29 (2019) 6200505.
7. Maulana, M.I.: AIP Conf. Proc. 2232 (2020) 050002.
Kováč, P., Hušek, I., Rosová, A., Melišek, T., and Kopera, Ľ.: Fine-filamentary in situ MgB2 wires, Supercond. Sci Technol. 23 (2010) 105006.
1. Hossain, M.S.A.: Supercond. Sci Technol. 24 (2011) 075013.
2. Wang Q.: Rare Metal Mater. Engn. 42 (2013) 881.
# 3. Yan, G.: Materials China 32 (2013) 550.
* 4. Schlachter, S.: In MgB2 superconducting wires. Ed. R. Flückiger. New Jersey: World Sci Publ. 2016. ISBN 978-981-4725-58-3. P. 549.
5. Yagai, T.: Cryogenics 96 (2018) 75.
6. Shahbazi, M.: IEEE Trans. Applied Supercond. 31 (2021) 6200305.
7. He, Y.X.: IEEE Trans. Applied Supercond. 32 (2022) 6200105.
Hušeková, K., Hušek, I., Kováč, P., Kulich, M., Dobročka, E., Štrbik, V., : Properties of MgB2 superconductor chemically treated by accetic acid. Physica C 470 (2010) 331-335.
1. Altin, S.: J. Phys. Chem. Solids 72 (2011) 1070.
2. Sun, Y.: J. Supercond. Novel Magnetism 25 (2012) 1735.
3. Song, K.J.: IEEE Trans. Applied Supercond. 23 (2013) 7100304.
4. Sun, Y.: Scripta Materialia 70 (2014) 55.
5. Owolabi, T.O.: J. Supercond. Novel Magnetism 28 (2015) 75.
6. Owolabi, T.O.: Applied Comput. Intelligence Soft Computing (2016) 1709827.
7. Grivel, J.-C.: Physica C 528 (2016) 65.
8. Sandu, V.: Supercond. Sci Technol. 29 (2016) 065012.
9. Burdusel, M.: Univ. Politeh. Bucharest Sci Bull. Ser. C 79 (2017) 155.
10. Qaid, S.A.S.: J. Mater. Sci-Mater. Electron. 28(2017) 14696.
11. Zhang, Y.: Physica C 573 (2020) 1353633.
12. Capra, M.: Mater. Today Comm. 26 (2021) 101731.
13. Olatunji, S.O.: Comput. Mater. Sci 192 (2021) 110392.
14. Olatunji, S.O.: Crystals 12 (2022) 228.
15. Maeda, M.: J. Alloys Comp. 954 (2023) 170148.
Kováč, P., Hušek, I., Melišek, T., Kopera, Ľ., and Reissner, M.: Stainless steel reinforced multi-core MgB2 wire subjected to variable deformations, heat treatments and mechanical stressing. Supercond. Sci Technol. 23 (2010) 065010.
1. Sun, Y.Y.: Physica C 477 (2012) 56.
2. Thomas, S.: Cryogenics 52 (2012) SI767.
3. Wang, Q.: Physica C 484 (2013) 163.
# 4. Sun, Y.: Mater. Sci Forum 745-746 (2013) 173.
5. Hossain, M.S.A.: IEEE Trans. Applied Supercond. 24 (2014) 6200304.
6. Young, E.A.: J. Phys.: Conf. Series 507 (2014) 032061.
7. Yang, Y.: Physica C 519 (2015) 118.
8. Konstantopoulou, K.: Supercond. Sci Technol. 29 (2016) 084005.
9. Alknes, P.: IEEE Trans. Applied Supercond. 26 (2016) 8401205.
# 10. Senol, M.A.: J. Supercond. Novel Magnetism 29 (2016) 2479.
11. Wan, F.: IEEE Trans. Applied Supercond. 27 (2017) 6200105.
12. Chen, S.K.: Vortices Nanostructured Superconductors. Ed. A. Crisan. ISBN 978-3-319-59355-5. Springer 2017. P. 65.
13. Mattje, V.M.: Periodico Tche Quimica 16 (2019) 301.
14. Konstantopoulou, K.: Supercond. Sci Technol. 32 (2019) 085003.
15. Maeda, M.: Ceramics Inter. 46 (2020) 21752.
# 16. Hannachi, E.: In Superconducting Materials. Springer, Singapore 2022, pp. 89.
Kováč, P., Reissner, M., Melišek, T., Hušek, I., and Mohammad, S.: Current densities of MgB2 wires by combined ex situ/in situ process, J. Applied Phys. 106 (2009) 013910.
1. Yucel, E.: J. Materials Sci-Mater. Electr. 22 (2011) 1143.
2. Martinez, E.: Supercond. Sci Technol. 26 (2013) 125017.
3. Shah, M.: Solid State Comm. 218 (2015) 31.
* 4. Kováč, J.: In MgB2 superconducting wires. Ed. R. Flückiger. New Jersey: World Sci Publ. 2016. ISBN 978-981-4725-58-3. P. 419.
5. Tan, K.Y.: J. Mater. Sci-Mater. Electron. 28(2017) 13391.
6. Kodama, M.: Mater. Res. Express 6 (2019) 026003.
7. Shah, M.S.: Refrigeration Sci Technol. 2019, p. 91.
8. Hapipi, N.M.: Applied Phys. A 128 (2022) 913.
Kulich, M., Kováč, P., Eisterer, M., Hušek, I., Melišek, T., Weber, H., Haessler, W., : Effect of C and SiC additions into in situ or mechanically alloyed MgB2 deformed in Ti sheath. Physica C 469 (2009) 827-831.
1. Sinha, B.B.: J. Alloys Compounds 486 (2009) 666.
2. Feng, W.J.: Physica C 470 (2010) 236.
3. Bhagurkar, A.G.: Supercond. Sci Technol. 28 (2015) 015012.
4. Chen, S.K.: Vortices Nanostructured Superconductors. Ed. A. Crisan. ISBN 978-3-319-59355-5. Springer 2017. P. 65.
Polichetti, M., Zola, D., Hušek, I., Kováč, P., Pace, S., : Effects of impurities addition in MgB2/Nb tapes on flux jumps instability and critical current density J. Phys.: Conf. Series 150 (2009) 052212.
1. Wang, Q.: Rare Metal Mater. Engn. 42 (2013) 881.
Kováč, P., Melišek, T., Kopera, Ľ., Hušek, I., Polák, M., and Kulich, M.: Progress in electrical and mechanical properties of rectangular MgB2 wires, Supercond. Sci Technol. 22 (2009) 075026.
1. Malagoli, A.: Supercond. Sci Technol. 23 (2010) 025032.
2. Hossain, M.S.A.: Supercond. Sci Technol. 24 (2011) 075013.
3. Malachevsky, M.T.: IEEE Trans. Applied Supercond. 21 (2011) 2676.
4. Yamamoto, A.: Japan. J. Applied Phys. 51 (2012) 010105.
5. Tanaka, H.: Supercond. Sci Technol. 25 (2012) 115022.
6. Chen, S.K.: Vortices Nanostructured Superconductors. Ed. A. Crisan. ISBN 978-3-319-59355-5. Springer 2017. P. 65.
7. Ballarino, A.: J. Phys. Conf. Ser. 871 (2017) 012098.
8. Tanaka, H.: IEEE Trans. Applied Supercond. 28 (2018) 8400605.
9. Wang Q.: Rare Metal Mater. Engn. 48 (2019) 3320.
10. Wang Q.: Rare Metal Mater. Engn. 49 (2020) 2825.
Kováč, P., Hušek, I., Melišek, T., Fedor, J., Cambel, V., Morawski, A., and Kario, A.: Properties of hot pressed MgB2/Ti tapes. Physica C 469 (2009) 713-716.
1. Sinha, B.B.: J. Alloys Compounds 486 (2009) 666.
2. Kim, J.H.: Physica C 470 (2010) 1207.
3. Cui, Y.J.: Phys. Status Solidi A 207 (2010) 2532.
4. Wang, D.: Supercond. Sci Technol. 25 (2012) 065013.
5. Sinha, B.B.: J. Supercond. Novel Magnetism 25 (2012) 413.
6. Tanaka, H.: Supercond. Sci Technol. 25 (2012) 115022.
7. Cetner, T.: High Pressure Res. 32 (2012) 419.
8. Mizutani, S.: Supercond. Sci Technol. 27 (2014) 044012.
9. Mizutani, S.: Supercond. Sci Technol. 27 (2014) 114001.
10. Wang, D.: Physica C 508 (2015) 49.
11. Wang, D.: Supercond. Sci Technol. 28 (2015) 105013.
12. Sandu, V .: Supercond. Sci Technol. 29 (2016) 065012.
13. Wang, D .: Supercond. Sci Technol. 29 (2016) 065003.
14. Wang, D.: Supercond. Sci Technol. 30 (2017) Iss. 6.
15. Mikhailov, B.P.: Phys. Atomic Nuclei 81 (2018) 1573.
16. Wang, D.: IEEE Trans. Applied Supercond. 29 (2019) 6200405.
17. Alimenti, A.: J. Phys.: Conf. Ser. 1559 (2020) 012039.
18. Ozge, E.: Cryogenics 112 (2020) 103205.
Hušek, I., Kováč, P., Melišek, T., and Kopera, Ľ.: Transport current densities of MgB2 wires, cable and continually transposed conductor, Cryogenics 49 (2009) 366-370.
1. Schlachter, S.I.: AIP Conf. Proc. 1219 (2010) 302.
2. Stenvall, A.: Supercond. Sci Technol. 24 (2011) 085016.
3. Zangenberg, N.: In: High Temperature Superconductors (HTS) for Energy Applications. Woodhead Publ. 2012. P. 369.
4. Cheadle, M.: IEEE Trans. Applied Supercond. 23 (2013) 6200805.
5. Hossain, M.S.A.: IEEE Trans. Applied Supercond. 24 (2014) 6200304.
6. Konstantopoulou, K.: Supercond. Sci Technol. 29 (2016) 084005.
* 7. Schlachter, S.: In MgB2 superconducting wires. Ed. R. Flückiger. New Jersey: World Sci Publ. 2016. ISBN978-981-4725-58-3. P. 549.
8. Pan, X.F.: IEEE Trans. Applied Supercond. 27 (2017) 6201005.
9. Nosov, A.A.: IEEE Trans. Applied Supercond. 28 (2018) 6200205.
10. Mizuno, S.: IEEE Trans. Applied Supercond. 28 (2018) 4602505.
11. Yagai, T.: Cryogenics 96 (2018) 75.
# 12. Yagai, T.: J. Phys.: Conf. Ser. 1054 (2018) 012080.
13. Konstantopoulou, K.: Supercond. Sci Technol. 32 (2019) 085003.
14. Jimbo, M.: IEEE Trans. Applied Supercond. 29 (2019) 8003305.
15. Nosov, A.A.: IEEE Trans. Applied Supercond. 29 (2019) 6200705.
16. Ahmad, I.: IEEE Trans. Applied Supercond. 30 (2020) Iss. 8.
17. Wang, D.: IEEE Trans. Applied Supercond. 30 (2020) Iss. 4.
18. Hira, M.: J. Phys.: Conf. Ser. 1590 (2020) 012058.
Holúbek, T., Kováč, P., Takács, S., Hušek, I., and Melišek, T.: Current sharing and the stability of composite MgB2 superconductors, Supercond. Sci Technol. 21 (2008) 065013.
1. Majkic, G.: Supercond. Sci Technol. 22 (2009) 034021.
2. Nakane, T.: Physica C 469 (2009) 1531.
3. Vinod, K.: Supercond. Sci Technol. 23 (2010) 105002.
4. Jarvela, J.: Cryogenics 51 (2011) 400.
5. Badica, P.: J. Optoelectron. Adv. Mater. 17 (2015) 1636.
6. Ahmad, I.: IEEE Trans. Applied Supercond. 29 (2018) Iss. 4.
7. Ahmad, I.: AIP Conf. Proc. 2009 (2018)020045.
8. Ahmad, I.: IEEE Trans. Applied Supercond. 30 (2020) Iss. 8.
9. Ahmad, I.: AIP Conf. Proc. 2220 (2020)110022.
10. Ahmad, I.: Physica B 603 (2021) 412675.
11. Kapolka, M.: Sci Rep. 12 (2022) 7030.
12. Kapolka, M.: IEEE Trans. Applied Supercond. 32 (2022) 6200305.
Holúbek, T., Kováč, P., and Hušek, I.: Relation between current transfer length and stability of Fe/ MgB2 and Fe/Nb/MgB2 conductors, Acta Physica Polonica A 113 (2008) 367-370.
1. Ulgen, A.T.: J. Supercond. Novel Magnetism 30 (2017) 3367.
Kováč, P., Hušek, I., and Melišek, T.: MgB2 cable made from two-axially rolled wires. Supercond. Sci Technol. 21 (2008) 125003.
1. Holubek, T.: Supercond. Sci Technol. 22 (2009) 055011.
2. Malagoli, A.: Supercond. Sci Technol. 22 (2009) 105017.
3. Stenvall, A.: Supercond. Sci Technol. 24 (2011) 085016.
4. Hossain, M.S.A.: IEEE Trans. Applied Supercond. 24 (2014) 6200304.
* 5. Malagoli, A.: In MgB2 superconducting wires. Ed. R. Flückiger. New Jersey: World Sci Publ. 2016. ISBN 978-981-4725-58-3. P. 239.
* 6. Schlachter, S.: In MgB2 superconducting wires. Ed. R. Flückiger. New Jersey: World Sci Publ. 2016. ISBN 978-981-4725-58-3. P. 549.
7. Pan, X.F.: IEEE Trans. Applied Supercond. 27 (2017) 6201005.
8. Mizuno, S.: IEEE Trans. Applied Supercond. 28 (2018) 4602505.
9. Yagai, T.: Cryogenics 96 (2018) 75.
10. Wang, D.: IEEE Trans. Applied Supercond. 30 (2020) Iss. 4.
11. Hira, M.: J. Phys.: Conf. Ser. 1590 (2020) 012058.
Kováč, P., Hušek, I., Dobročka, E., Melišek, T., Haessler, W., Herrmann, M., : MgB2 tapes made of mechanically alloyed precursor powder in different metallic sheaths. Supercond. Sci Technol. 21 (2008) 015004.
1. Lee, T.G.: Supercond. Sci Technol. 22 (2009) 045006.
2. Eisterer, M.: Supercond. Sci Technol. 23 (2010) 034006.
3. Eisterer, M.: Physica C 470 (2010) S651.
4. Sun, Y.Y.: Physica C 477 (2012) 56.
5. Takahashi, M.: Supercond. Sci Technol. 26 (2013) 075007.
6. Sun, Y.Y.: J. Mater. Sci-Mater. Electron. 24 (2013) 1250.
7. Sun, Y.Y.: Physica C 485 (2013) 24.
# 8. Sun, Y.: Mater. Sci Forum 745-746 (2013) 173.
9. Patel, D.: Progress in Supercond. and Cryogenics (PSAC) 18 (2016) 1.
10. Kodama, M.: Supercond. Sci Technol. 30 (2017) 044006.
11. Karaboga, F.: J. Alloys Compounds 727 (2017) 20.
12. Xiong X.: Rare Metal Mater. Engn. 48 (2019) 1330.
13. Hossain, M.S.A.: J. Magnetism Magnetic Mater. 497 (2020) 166046.
14. Hossain, M.S.A.: J. Magnesium Alloys 8 (2020) 493.
15. Karaboga, F.: J. Mater. Sci-Mater. Electron. 31 (2020) 7141.
16. Park, S.Y.: Mater. Res. Express 9 (2022) 086505.
Kováč, P., Pachla, W., Hušek, I., Kulczyk, M., Melišek, T., Holúbek, T., Diduszko, R., Reissner, M., : Multicore MgB2 wires made by hydrostatic extrusion. Physica C 468 (2008) 2356- 2360. (APVV 0398-07).
1. Argyropoulou, R.: J. Alloys Compounds 480 (2009) 575.
2. Hossain, M.S.A.: Supercond. Sci Technol. 22 (2009) 095004.
3. Zhou, S.H.: Solid State Sci 12 (2010) 105.
4. Grivel, J.-C.: Supercond. Sci Technol. 25 (2012) 015010.
5. Sun, Y.Y.: J. Supercond. Novel Magnetism 25 (2012) 943.
6. Lee, T.-H.: Metals Mater. Inter. 21 (2015) 402.
Kováč, P., Birajdar, B., Hušek, I., Holúbek, T., Eibl, O., : Stabilized in situ rectangular MgB2 wires: the effect of B purity and sheath materials. Supercond. Sci Technol. 21 (2008) 045011.
1. Chen, S.K.: Supercond. Sci Technol. 22 (2009) 125005.
2. Kim, J.H.: Supercond. Sci Technol. 23 (2010) 075014.
3. Kario, A.: Supercond. Sci Technol. 23 (2010) 025018.
4. Wang, C.: Supercond. Sci Technol. 25 (2012) 035018.
5. Wang, C.: Supercond. Sci Technol. 25 (2012) 075010.
6. Motaman, A.: J. Supercond. Novel Magnetism 27 (2014) 1643.
7. Rahul, S.: Mater. Research Bull. 93 (2017) 296.
8. Xiong X.: Rare Metal Mater. Engn. 48 (2019) 1330.
9. Kang, M.O.: Progress in Supercond. Cryogen. 21 (2019) 18.
10. Hossain, M.S.A.: J. Magnetism Magnetic Mater. 497 (2020) 166046.
11. Hossain, M.S.A.: J. Magnesium Alloys 8 (2020) 493.
Kováč, P., Hušek, I., Pachla, W., Kulczyk, M., : Properties of seven-filament in-situ MgB2/Fe composite deformed by hydrostatic extrusion, drawing and rolling. Supercond. Sci Technol. 20 (2007) 607-610.
1. Nachtrab, W.T.: Advances Cryogenic Engn. 54, 986 (2008) 367.
2. Vignolo, M.: IEEE Trans. Applied Supercond. 18 (2008) 1175.
3. Qu, B.: Supercond. Sci Technol. 22 (2009) 075014.
4. Wang, C.: Supercond. Sci Technol. 25 (2012) 125001.
* 5. Hossain, S.M.A. and Flückiger, R.: In MgB2 superconducting wires. Ed. R. Flückiger. New Jersey: World Sci Publ. 2016. ISBN 978-981-4725-58-3. P. 289.
6. Jie, H.: Scripta Materialia 129 (2017) 79.
Kováč, P., Hušek, I., Melišek, T., Holúbek, T., : Properties of stabilized MgB2 composite wire with Ti barrier. Supercond. Sci Technol. 20 (2007) 771-776.
* 1. Birajdar, B.: PhD Thesis. Univ. Tubingen 2007.
2. Lee, T.G.: Supercond. Sci Technol. 22 (2009) 045006.
3. Eisterer, M.: IEEE Trans. Applied Supercond. 19 (2009) 2788.
4. Spillantini, P.: Adv. Space Research. 45 (2010) 900.
5. Vinod, K.: Supercond. Sci Technol. 23 (2010) 105002.
6. Kario, A.: Supercond. Sci Technol. 23 (2010) 115007.
7. Spillantini, P.: Acta Astronautica 68 (2011) 1430.
8. Rostila, L.: J. Supercond. Novel Magnetism 24 (2011) 313.
9. Spillantini, P.: Acta Astronautica 104 (2014) SI509.
* 10. Haessler, W.: In MgB2 superconducting wires. Ed. R. Flückiger. New Jersey: World Sci Publ. 2016. ISBN 978-981-4725-58-3. P. 271.
11. Ahmad, I.: IEEE Trans. Applied Supercond. 30 (2020) Iss. 8.
12. Diaz, M.A.: IEEE Trans. Applied Supercond. 30 (2020) Iss. 4.
13. Ahmad, I.: Physica B 603 (2021) 412675.
14. Shahbazi, M.: IEEE Trans. Applied Supercond. 31 (2021) Iss. 5.
15. Kodama, M.: Supercond. Sci Technol. 35 (2022) 094007.
16. Tsapleva, A.S.: Phys. Metals Metall. 123 (2022) 839.
Kováč, P., Hušek, I., Skákalová, V., Meyer, J., Dobročka, E., Hirscher, M., Roth, S., : Transport current improvements of in-situ MgB2 tapes by the addition of carbon nanotubes, silicon carbide or graphite. Supercond. Sci Technol. 20 (2007) 105-111.
1. Yeoh, W.K.: Applied Phys. Lett. 90 (2007) Art. No. 122502.
2.Eisterer, M.: Supercond. Sci Technol. 20 (2007) R47.
3. Zhang, X.P.: Supercond. Sci Technol. 20 (2007) 1198.
4. Awana, V.P.S.: Physica C 467 (2007) 67.
5. Shekhar, C.: J. Applied Phys. 102 (2007) art. no. 093910.
6. Xu, A.X.: Physica C 466 (2007) 190.
7. Hassler, W.: Supercond. Sci Technol. 21 (2008) 062001.
8. Asthana, A.: Supercond. Sci Technol. 21 (2008) 115013.
9. Serrano, G.: J. Phys. Conf. Series 97 (2008) 012129.
10. Serrano, G.: J. Phys. Conf. Series 97 (2008) 012127.
11. Vinod, K.: Solid State Sci 12 (2010) 610.
12. Devadas, K.M.: J. Alloys Compounds 509 (2011) 8038.
13. Yao, C.: Supercond. Sci Technol. 24 (2011) 055016.
14. Novosel, N.: Supercond. Sci Technol. 26 (2013) 105024.
15. Chen, S.K.: Vortices Nanostructured Superconductors. Ed. A. Crisan. ISBN 978-3-319-59355-5. Springer 2017. P. 65.
16. Liu, H.R.: J. Mater. Sci-Mater. Electron. 29 (2018) 7763.
17. Liu, H.: J. Supercond. Novel Magnetism 31 (2018) 1053.
18. Xiong X.: Rare Metal Mater. Engn. 48 (2019) 1330.
19. Melone, M.: Mater. Today-Proc. 14 (2019)SI168.
20. Qaid, S.A.S.: Physica C 568 (2020) 1353578.
# 21. Mikhailova, A.: J. Phys.: Conf. Ser. 1758 (2021) 012026.
22. Kaya, N.: J. Mater. Sci-Mater. Electron. 33 (2022) 3786.
23. Qaid, S.A.S.: J. Magnet. Magnet. Mater. 552 (2022) 169213.
Kováč, P., Hušek, I., and Melišek, T.: Aspect ratio and temperature effect on the Ic anisotropy in situ MgB2 tapes, Supercond. Sci Technol. 19 (2006) 470-472.
1. Eisterer, M.: Supercond. Sci Technol. 20 (2007) R47.
2. Wang, D.L.: Physica C 470 (2010) 1435.
3. Iwanaka, T.: Supercond. Sci Technol. 32 (2019) 045004.
4. Hossain, M.S.A.: J. Magnetism Magnetic Mater. 497 (2020) 166046.
5. Iwanaka, T.: Mater. Res. Express 7 (2020) 056003.
6. Iwanaka, T.: Japan. J. Applied Phys. 60 (2021) 123004.
7. Iwanaka, T.: Japan. J. Applied Phys. 62 (2023) 025501.
Kováč, P., Hušek, I., Melišek, T., Haessler, W., Herrmann, M., : Improvement of current density by texture and Ic anisotropy in thin filament MgB2/Fe tapes. Supercond. Sci Technol. 19 (2006) 998-1002.
1.Eisterer, M.: Supercond. Sci Technol. 20 (2007) R47.
* 2. van Weeren, H.: PhD Thesis. Enschede: 2007.
3. Mochizuki, T.: J. Japan Inst. Metals 74 (2010) 428.
4. Kim, J.H.: Physica C 470 (2010) 1426.
5. Kim, J.H.: Advanced Mater. 23 (2011) 4942.
6. Hossain, M.S.A.: J. Magnetism Magnetic Mater. 497 (2020) 166046.
7. Hossain, M.S.A.: J. Magnesium Alloys 8 (2020) 493.
8. Yao, C.: J. Mater. Chem. C 11 (2023) 1470.
Grivel, J., Pinholt, R., Andersen, N., Kováč, P., Hušek, I., and Homeyer, J.: In situ investigations of phase transformations in Fe-sheathed MgB2 wires, Supercond. Sci Technol. 19 (2006) 96-101.
1. Yeoh, W.K.: Applied Phys. Lett. 90 (2007) 122502.
2. Eisterer, M.: Supercond. Sci Technol. 20 (2007) R47.
3. Varghese, N.: J. Applied Phys. 102 (2007) art. no. 043914.
4. Yan, S.C.: J. Alloys Compounds 443 (2007) 161.
* 5. Lezza, P.: PhD Thesis. Univ. of Geneve 2007.
* 6. Birajdar, B.: PhD Thesis. Universität Tübingen 2007.
7. Defouw, J.D.: Acta Materialia 56 (2008) 5751.
8. Defouw, J.D. : Acta Materialia 56 (2008) 1680.
9. Birajdar, B.: J. Applied Phys. 105 (2009) 033903.
10. Vignolo, M.: IEEE Trans. Applied Supercond. 19 (2009) 2718.
11. Kario, A.: Supercond. Sci Technol. 23 (2010) 025018.
12. DeFouw, J.D.: Physica C 470 (2010) 648.
13. Kario, A.: Supercond. Sci Technol. 23 (2010) 115007.
14. Ma, Z.Q.: Materials Chem. Phys. 126 (2011) 114.
15. Vignolo, M.: Supercond. Sci Technol. 24 (2011) 065014.
16. Ma, Z.Q.: Inter. Mater. Rev. 56 (2011) 267.
17. Sandu, V.: Supercond. Sci Technol. 29 (2016) 065012.
18. Burdusel, M.: Univ. Politeh. Bucharest Sci Bull. Ser. C 79 (2017) 155.
19. Karaboga, F.: J. Alloys Compounds 727 (2017) 20.
20. Karaboga, F.: IEEE Trans. Applied Supercond. 28 (2018) 6200805.
21. Karaboga, F.: J. Supercond. Novel Magnetism 31 (2018) 1359.
22. Bulbul, F.: Kovove Mater.-Metall. Mater. 56 (2018) 223.
23. Aji, L.B.B.: J. Applied Phys. 125 (2019) 075306.
24. Ulgen, A.T.: Ceram. Inter. 45 (2019) 1031.
25. Luo, W.: Supercond. Sci Technol. 32 (2019) 085006.
26. Karaboga, F.: J. Mater. Sci-Mater. Electr. 31 (2020) 7141.
# 27. Guan, D.: Xiyou Jinshu/Chinese J. Rare Metals 46 (2022) 497.
28. Maeda, M.: J. Alloys Comp. 954 (2023) 170148.
Kováč, P., Hušek, I., Melišek, T., : MgB2 composite superconductors made by ex-situ and in-situ process. Advances in Sci and Technol. 47 (2006) 131-136.
1. Nardelli, D.: Supercond. Sci Technol. 26 (2013) 075010.
2. Azam, M.: Materials 16 (2023) 5358.
Kováč, P., Hušek, I., Melišek, T., Kulich, M., and Štrbik, V.: MgB2 composite wires with Fe, Nb and Ta sheaths, Supercond. Sci Technol. 19 (2006) 600-605.
1. Liang, G.: Supercond. Sci Technol. 19 (2006) 1146.
2. Kumar, R.G.A.: Supercond. Sci Technol. 20 (2007) 222.
3. Eisterer, M.: Supercond. Sci Technol. 20 (2007) R47.
4. Yamamoto, A.: Physica C 463 (2007) 807.
5. Shcherbakov, A.V.: IEEE Trans. Applied Supercond. 17 (2007) 2806.
6. Liang, G.: Physica C 457 (2007) 47.
7. Ye, L.: Supercond. Sci Technol. 20 (2007) 621.
8. Grivel, J.C.: Supercond. Sci Technol. 21 (2008) art. no. 035006.
* 9. van Weeren, H.: PhD Thesis. Enschede: 2007.
10. Feng, W.J.: Physica C 470 (2010) 236.
11. Zhang, X.P.: Physica C 470 (2010) 104.
12. Jung, A.: Supercond. Sci Technol. 23 (2010) 095006.
13. Jarvela, J.: Cryogenics 51 (2011) 400.
14. Fujii, H.: IEEE Trans. Applied Supercond. 21 (2011) 2664.
15. Ma, Z.Q.: Inter. Mater. Rev. 56 (2011) 267.
16. Abdyukhanov, I.: IEEE Trans. Applied Supercond. 28 (2018) 6200504.
17. Avronsart, J.: IEEE Trans. Applied Supercond. 28 (2018) 6200305.
18. Fareed, M.U.: IEEE Trans. Applied Supercond. 29 (2019) 5900705.
19. Madhar, N.A.: Metals 9 (2019) 1190.
20. Yetis, H.: Physica B 593 (2020) 412277.
21. Karaboga, F.: J. Mater. Sci-Mater. Electron. 31 (2020) 7141.
22. Fareed, M.U.: Materials 14 (2021) 6204.
23. Kapolka, M.: IEEE Trans. Applied Supercond. 32 (2022) 6200305.
24. Tsapleva, A.S.: Phys. Metals Metall. 123 (2022) 839.
25. Park, S.Y.: Mater. Res. Express 9 (2022) 086505.
26. Rosa, G.B.: ACS Omega 9 (2024) 36802.
Kováč, P., Hušek, I., Melišek, T., Martinez, E., Dhalle, M., : Properties of doped ex and in situ MgB2 multi-filament superconductors. Supercond. Sci Technol. 19 (2006) 1076-1082.
1.Eisterer, M.: Supercond. Sci Technol. 20 (2007) R47.
2. Stenvall, A.: Supercond. Sci Technol. 20 (2007) 859.
* 3. van Weeren, H.: PhD Thesis. Enschede: Univ. of Twente 2007.
4. Horvat, J: Supercond. Sci Technol. 21 (2008) 065003.
5. Hossain, M.S.A.: IEEE Trans. Applied Supercond. 24 (2014) 6200304.
6. Sobrero, C.E.: Adv. Cond. Matter Phys. (2015) 297363.
7. Yang, Y.: Physica C 519 (2015) 118.
8. Shah, M.: Solid State Comm. 218 (2015) 31.
9. Xu, D.: IEEE Trans. Applied Supercond. 27 (2017) 6200304.
10. Wan, F.: IEEE Trans. Applied Supercond. 27 (2017) 6200105.
11. Liu, D.: J. Supercond. Novel Magnetism 30 (2017) 1757.
12. Rosa, G.B.: ACS Omega 9 (2024) 36802.
Pachla, W., Morawski, A., Kováč, P., Hušek, I., Mazur, A., Lada, T., Diduszko, R., Melišek, T., Štrbik, V., Kulczyk, M., : Properties of hydrostatically extruded in situ MgB2 wires doped with SiC. Supercond. Sci Technol. 19 (2006) 1-8.
1. Zhang, X.P.: Supercond. Sci Technol. 19 (2006) 699.
2. Zhang, X.P.: Supercond. Sci Technol. 19 (2006) 479.
3. Xu, H.L.: Supercond. Sci Technol. 19 (2006) 1169.
# 4. Giunchi, G.: Mater. Res. Soc. Symp. Proc. 946 (2006) 9.
5. Demencik, E.: J. Phys.: Conf. Series 43 (2006) 83.
6. Dou, S.X.: Phys. Rev. Lett. 98 (2007) 097002.
7. Liang, G.: Supercond. Sci Technol. 20 (2007) 697.
8. Eisterer, M.: Supercond. Sci Technol. 20 (2007) R47.
9. Shekhar, C.: J. Applied Phys. 102 (2007) 093910.
10. Susner, M.A.: Physica C 456 (2007) 180.
11. Zhang, F.F.: Arch. Pathol. & Lab. Medicine 131 (2007) 773.
* 12. Birajdar, B.: PhD Thesis. Universität Tübingen 2007.
13. Zhang, X.P.: Magnesium – Aluminium Mater. – Aerospace Mater. – Supercond.Functional Mater. 546-549 (2007) 2041.
14. Birajdar, B.: J. Phys.: Conf. Series 97 (2008) 012246.
15. Birajdar, B.: Supercond. Sci Technol. 21 (2008) 073001.
16. Yamamoto, A.: Adv. in Condensed Matter Mater. Research. Nova Publ. 2010. ISBN: 978-1-60741-959-4. P. 83-115.
17. Maeda, M.: Scripta Materialia 64 (2011) 1059.
18. Adelmann, B.: Applied Phys. A 122 (2016) 642.
* 19. Haessler, W.: In MgB2 superconducting wires. Ed. R. Flückiger. New Jersey: World Sci Publ. 2016. ISBN 978-981-4725-58-3. P. 271.
20. Adelmann, B.: Applied Phys. A 123 (2017) 454.
# 21. Wang, D.: Xiyou Jinshu/Chin. J. Rare Metals 41 (2017) 445.
Kováč, P., Hušek, I., Melišek, T., Štrbik, V., : Basic properties of rectangular MgB2/FeNiCo and MgB2/Fe wires made in situ. Supercond. Sci Technol. 18 (2005) 856-860.
1. Yeoh, W.K.: Applied Phys. Lett. 90 (2007) 122502.
2. Eisterer, M.: Supercond. Sci Technol. 20 (2007) R47.
3. Grivel, J.C.: Supercond. Sci Technol. 21 (2008) 035006.
* 4. van Weeren, H.: PhD Thesis. Enschede: 2007.
5. Ye, S.J.: Supercond. Sci Technol. 27 (2014) 055017.
* 6. Kumakura, H.: In MgB2 superconducting wires. Ed. R. Flückiger. New Jersey: World Sci Publ. 2016. ISBN 978-981-4725-58-3. P. 315.
7. Maeda, M.: J. Alloys Comp. 954 (2023) 170148.
Bartolome, E., Granados, X., Cambel, V., Fedor, J., Kováč, P., Hušek, I., : Critical current density analysis of ex situ MgB2 wire by in-field and temperature Hall probe imaging. Supercond. Sci Technol. 18 (2005) 1135-1140.
1. Eisterer, M.: Supercond. Sci Technol. 20 (2007) R47.
2. Higashikawa, K.: Physica C 504 (2014) 62.
Kováč, P., Melišek, T., Dhalle, M., den Ouden, A., and Hušek, I.: Critical currents of MgB2 wires prepared in situ and ex situ subjected to axial stress, Supercond. Sci Technol. 18 (2005) 1374-1379.
1. Vinod, K.: Supercond. Sci Technol. 20 (2007) R1.
* 2. van Weeren, H.: PhD Thesis. Enschede: 2007.
* 3. Lezza, P.: PhD Thesis. Univ. of Geneve 2007.
4. Nardelli, D.: Supercond. Sci Technol. 26 (2013) 075010.
5. Li, C.S.: Physica C 494 (2013) 177.
6. Pasquet, R.: IEEE Trans. Applied Supercond. 25 (2015) 4603605.
7. Konstantopoulou, K.: Supercond. Sci Technol. 29 (2016) 084005.
8. Alknes, P.: IEEE Trans. Applied Supercond. 26 (2016) 8401205.
* 9. Kumakura, H.: In MgB2 superconducting wires. Ed. R. Flückiger. New Jersey: World Sci Publ. 2016. ISBN978-981-4725-58-3. P. 315.
10. Akdogan, M.: J. Alloys Compounds 702 (2017) 399.
11. Avronsart, J.: IEEE Trans. Applied Supercond. 28 (2018) 6200305.
12. Ulgen, A.T.: Ceram. Inter. 45 (2019) 1031.
13. Togano, K.: J. Japan Inst. Metals Mater. 83 (2019) SI346.
14. Liu, X.: Supercond. Sci Technol. 36 (2023) 015004.
Kováč, P., Melišek, T., and Hušek, I.: Ic anisotropy of in situ made MgB2 tapes. Supercond. Sci Technol. 18 (2005) L45-L48.
1. Liang, G.: Supercond. Sci Technol. 20 (2007) 697.
2. Eisterer, M.: Supercond. Sci Technol. 20 (2007) R47.
3. Long, N.J.: Supercond. Sci Technol. 21 (2008) art. no. 025007.
4. Serrano, G.: J. Applied Phys. 103 (2008) art. no. 023907.
5. Serrano, G.: J. Phys.: Conf. Series 97 (2008).
6. Eisterer, M.: Supercond. Sci Technol. 23 (2010) 034006.
7. Wang, D.L.: Physica C 470 (2010) 1435.
8. Liang, G.: IEEE Trans. Applied Supercond. 21 (2011) 2672.
9. Fluekiger, R.: Physica C 471 (2011) 1119.
* 10. Hossain, S.M.A. and Flückiger, R.: In MgB2 superconducting wires. Ed. R. Flückiger. New Jersey: World Sci Publ. 2016. ISBN 978-981-4725-58-3. P. 289.
11. Melone, M.: Mater. Today-Proc. 14 (2019) SI168.
12. Grigoroscuta, M.A.: Supercond. Sci Technol. 32 (2019) 125001.
13. Hossain, M.S.A.: J. Magnet. Magnetic Mater. 497 (2020) 166046.
14. Melone, M.: IEEE Trans. Applied Supercond. 31 (2021) 6200405.
Cambel, V., Fedor, J., Gregušová, D., Kováč, P., and Hušek, I.: Large-scale high-resolution scanning Hall probe microscope used for MgB2 filament characterization. Supercond. Sci Technol. 18 (2005) 417-421.
1. Eisterer, M.: Supercond. Sci Technol. 20 (2007) R47.
2. Ma, Z. Q.: Inter. Materials Rev. 56 (2011) 267.
3. Higashikawa, K.: Physica C 504 (2014) 62.
4. Rostami, Kh.R.: Instrum. Experimen. Techn. 59 (2016) 273.
5. Shaw, G.: Rev. Sci Instrum. 87 (2016) 113702.
6. Rostami, Kh. R.: Measurement Techn. 59 (2017) 1297.
7. Rostami, Kh.R.: Instrum. Experimen. Techn. 62 (2019) 450.
8. Zhang, W.: Ceramics Inter. 45 (2019) 6413.
9. Shaw, G.: AIP Conf. Proc. 2115 (2019) UNSP 030210.
10. Rostami, Kh.R.: Techn. Phys. 65 (2020) 1975.
11. Huang, Z.: Supercond. Sci Technol. 34 (2021) 075007.
Dhalle, M., van Weeren, H., Wessel, S., den Ouden, A., ten Kate, H., Hušek, I., Kováč, P., Schlachter, S., Goldacker, W., : Scaling the reversible strain response of MgB2 conductors. Supercond. Sci Technol. 18 (2005) S253-S260.
1. Eisterer, M.: Supercond. Sci Technol. 20 (2007) R47.
2. Sumption, M.D.: Physica C 458 (2007) 12.
* 3. Lezza, P.: PhD Thesis. Univ. of Geneve 2007.
4. Oh, S.: Physica C 468 (2008) 1821.
5. Zeng, R.: Applied Phys. Lett. 94 (2009) 042510.
6. Oh, S.: J. Applied Phys. 106 (2009) 063912.
7. Ekin, J.W.: Supercond. Sci Technol. 23 (2010) 083001.
8. Malachevsky, M.T.: IEEE Trans. Applied Supercond. 21 (2011) 2676.
9. Cheggour, N.: Supercond. Sci Technol. 25 (2012) 015001.
10. Nishijima, G.: Supercond. Sci Technol. 25 (2012) 054012.
11. Pasquet, R.: IEEE Trans. Applied Supercond. 25 (2015) 4603605.
12. Al Amin, A.: Supercond. Sci Technol. 29 (2016) 055008.
* 13. Kumakura, H.: In MgB2 superconducting wires. Ed. R. Flückiger. New Jersey: World Sci Publ. 2016. ISBN978-981-4725-58-3. P. 315.
14. Ekin, J.W.: Supercond. Sci Technol. 29 (2016) 123002.
15. Deissler, R.J.: Supercond. Sci Technol. 30 (2017) 025021.
16. Baig, T.: Supercond. Sci Technol. 30 (2017) 043002.
# 17. Amin, A.A.: IEEE Trans. Applied Supercond. 27 (2017) 7820118.
18. Avronsart, J.: IEEE Trans. Applied Supercond. 28 (2018) 6200305.
19. Poole, C.: Cryogenics 100 (2019) 18.
20. Zhang, Y.: Physica C 573 (2020) 1353633.
21. Liu, X.: Supercond. Sci Technol. 36 (2023) 015004.
Pachla, W., Kováč, P., Hušek, I., Melišek, T., Müller, M., Štrbik, V., Mazur, A., and Presz, A.: The effect of hydrostatic extrusion on the Jc(B) characteristic of ex situ MgB2 wires, Supercond. Sci Technol. 18 (2005) 552-556.
1. Zdunek, J.: Solid State Phenomena 114 (2006) 171.
2. Vinod, K.: Supercond. Sci Technol. 20 (2007) R1.
3. Haessler, W.: IEEE Trans. Applied Supercond. 17 (2007) 2919.
* 4. van Weeren, H.: PhD Thesis. Enschede: 2007.
* 5. Birajdar, B.: PhD Thesis. Universität Tübingen 2007.
6. Fujii, H.: Supercond. Sci Technol. 21 (2008) art. no. 015002.
7. Birajdar, B.: Supercond. Sci Technol. 21 (2008) 073001.
8. Birajdar, B.: J. Phys.: Conf. Series 97 (2008) 012246.
9. Birajdar, B.: J. Phys.: Conf. Series 97 (2008) 012217.
10. Birajdar, B.: J. Applied Phys. 105 (2009) 033903.
11. Bhadauria, P.P.S.: J. Applied Phys. 113 (2013) 063908.
12. Fujii, H.: Supercond. Sci Technol. 27 (2014) 035002.
* 13. Birajdar, B.: In MgB2 superconducting wires. Ed. R. Flückiger. New Jersey: World Sci Publ. 2016. ISBN 978-981-4725-58-3. P. 111.
* 14. Hossain, S.M.A.: In MgB2 superconducting wires. Ed. R. Flückiger. New Jersey: World Sci Publ. 2016. ISBN 978-981-4725-58-3. P. 289.
# 15. Bhadauria, P.P.S.: In Comprehensive Energy Systems. Elsevier 2018. ISBN: 978-012809597-3, pp. 303-328.
16. Zhang, D.: Supercond. Sci Technol. 32 (2019) 125003.
Kováč, P., Hušek, I., Melišek, T., Dhalle, M., Müller, M., den Ouden, A., : The effect of shape and deformation in ex situ MgB2–W/Fe composite wires. Supercond. Sci Technol. 18 (2005) 615-622.
* 1. Hyslop, D.: PhD Thesis. Oxford: Oxford Univ. 2005
2. Lezza, P.: Supercond. Sci Technol. 19 (2006) 286.
3. Vinod, K.: Supercond. Sci Technol. 20 (2007) R1.
4. Lezza, P.: IEEE Trans. Applied Supercond. 17 (2007) 2834.
* 5. van Weeren, H.: PhD Thesis. Enschede: 2007.
* 6. Lezza, P.: PhD Thesis. Univ. of Geneve 2007.
7. Deviatkin, E.A.: Inter. J. Applied Electromagn. Mechanics 27 (2008) 243.
8. Wang, D.L.: Physica C 470 (2010) 1435.
9. Hossain, M.S.A.: J. Magnesium Alloys 8 (2020) 493.
Zola, D., Gömöry, F., Polichetti, M., Strýček, F., Seiler, E., Hušek, I., Kováč, P., and Pace, S.: A study of coupling loss on bi-columnar BSCCO/Ag tapes through ac susceptibility measurements. Supercond. Sci. Technol. 17 (2004) 501-511.
1.Chen, D.X. : Supercond. Sci Technol. 21 (2008) 085013.
2. Celebi, S.: Supercond. Sci Technol. 22 (2009) 034018.
3. Fabbricatore, P.: J. Applied Phys. 106 (2009) 083905.
4. Celebi, S.: Supercond. Sci Technol. 23 (2010) 025021.
5. Grinenko, V.: Supercond. Sci Technol. 25 (2012) 075006.
6. Ozturk, A.: European Phys. J.-Applied Phys. 80 (2017) 30601.
7. Menana, H.: Open Phys. 16 (2018) 183.
8. Topping, C.V.: J. Phys. – Cond. Matt. 31 (2019) 013001.
9. Niu, M.: J. Supercond. Novel Magnetism 32 (2019) 499.
10. Menana, H.: IEEE Trans. Magnet. 56 (2020) 7514504.
Ahoranta, M., Lehtonen, J., Kováč, P., Hušek, I., Melišek, T., : Effect of bending and tension on the voltage–current relation of Bi-2223/Ag. Physica C 401 (2004) 241-245.
1. Zhang, G.M.: Supercond. Sci Technol. 17 (2004) 1018.
2. Shigue, C.Y.: IEEE Trans. Applied Supercond. 15 (2005) 2492.
3. Baldan, C.A.: IEEE Trans. Applied Supercond. 15 (2005) 3552.
4. Malachevsky, M.T.: Supercond. Sci Technol. 18 (2005) 289.
5. Wu, Y.L.: ICEC 20 2005. P. 491.
6. Shigue, C.Y.: IEEE Trans. Applied Supercond. 16 (2006) 1027.
7. Ochiai, S.: J. Applied Phys. 106 (2009) 103916.
8. Ochiai, S.: Materials Trans. 51 (2010) 1663.
9. Huang, L.: IEEE Trans. Applied Supercond. 22 (2012) 6400404.
Pachla, W., Diduszko, R., Presz, A., Kováč, P., Hušek, I., : Effect of texture on Jc in Bi-2223 tapes. Supercond. Sci Technol. 17 (2004) 1426-1429.
1. Gulamova, D.D.: Technical Phys. 54 (2009) 860.
Kováč, P., Hušek, I., Melišek, T., Grovenor, C., Haigh, S., and Jones, H.: Improvement of the current carrying capability of ex situ MgB2 wires by normal particle additions, Supercond. Sci Technol. 17 (2004) 1225-1230.
1. Holcomb, M.J.: Physica C 423 (2005) 103.
2. Musenich, R.: IEEE Trans. Applied Supercond. 15 (2005) 1452.
* 3. Hyslop, D.: PhD Thesis. Oxford: Oxford Univ. 2005.
4. Nakane, T.: Applied Phys. Lett. 88 (2006) 022513.
5. Yamamoto, A.: Physica C 445 (2006) 806.
6. Gao, Z.S.: Supercond. Sci Technol. 20 (2007) 57.
7. Fujii, H.: J. Materials Res. 22 (2007) 1281.
8. Gozzelino, L.: IEEE Trans. Applied Supercond. 17 (2007) 2726.
9. Agostino, A.: IEEE Trans. Applied Supercond. 17 (2007) 2774.
10. Zhang, X.P.: IEEE Trans. Applied Supercond. 17 (2007) 2925.
11. Kumar, R.G.A.: Applied Phys. A 88 (2007) 243.
* 12. van Weeren, H.: PhD Thesis. Enschede: 2007.
13. Fujii, H.: Supercond. Sci Technol. 21 (2008) art. no. 015002.
14. Stenvall, A.: Supercond. Sci Technol. 21 (2008) 065012.
15. Chauhan, S.R.: IEEE Trans. Applied Supercond. 20 (2010) 26.
16. Wang, C.C.: J. Applied Phys. 108 (2010) 023901.
17. Hwang, S.M.: Physica C 470 (2010) 1430.
18. Tripathi, D.: J. Applied Phys. 114 (2013) 093906.
19. Sun, Y.Y.: J. Mater. Sci-Mater. Electron. 24 (2013) 1250.
20. Tripathi, D.: J. Supercond. Novel Magnetism 27 (2014) 1647.
21. Tripathi, D.: Indian J. Phys. 88 (2014) 1175.
22. Badica, P.: Supercond. Sci Technol. 27 (2014) 095013.
23. Karaboga, F.: J. Mater. Sci-Mater. In Electron. 27 (2016) 8512.
24. Grivel, J.-C.: Physica C 550 (2018) 1.
25. Fujii, H.: Physica C 559 (2019) 32.
26. Haessler, W.: Physica C 571 (2020) 1353617.
27. Fujii, H.: Physica C 591 (2021) 1353972.
28. Fujii, H.: Physica C 603 (2022) 1354172.
29. Zhang, J.: Supercond. Sci Technol. 36 (2023) 025008.
30. Grivel, J.C.: Physica C 609 (2023) 1354260.
31. Da Silva, L.B.S.: IEEE Trans. Applied Supercond. 33 (2023) 6801005.
Grovenor, C., Goodsir, L., Salter, C., Kováč, P., Hušek, I., : Interfacial reactions and oxygen distribution in MgB2 wires in Fe, stainless steel and Nb sheaths. Supercond. Sci Technol. 17 (2004) 479-484.
1. Wang, X.L.: Supercond. Sci Technol. 17 (2004) L21.
2. Xu, X.L.: Physica C 419 (2005) 94.
3. Holcomb, M.J.: Physica C 423 (2005) 103.
4. Lezza, P.: IEEE Trans. Applied Supercond. 15 (2005) 3196.
5. Lezza, P.: Supercond. Sci Technol. 18 (2005) 753.
6. Horvat, J.: Supercond. Sci Technol. 18 (2005) 682.
7. Chen, S.K.: Applied Phys. Lett. 87 (2005) Art. No. 182504.
8. Lezza, P.: Supercond. Sci Technol. 19 (2006) 1030.
9. Kumar, R.G.A.: Supercond. Sci Technol. 20 (2007) 222.
10. Gomory, F.: Applied Phys. Lett. 90 (2007) Art. No. 092506.
11.Eisterer, M.: Supercond. Sci Technol. 20 (2007) R47.
12. Lezza, P.: IEEE Trans. Applied Supercond. 17 (2007) 2834.
13. Tan, K.S.: Supercond. Sci Technol. 21 (2008) art. no. 015015.
* 14. Lezza, P.: PhD Thesis. Univ. of Geneve 2007.
15. Serrano, G.: : J. Phys.: Conf. Series 97 (2008) art. no. 012127.
16. Glowacki, B.A.: Supercond. Sci Technol. 22 (2009) 034013.
17. Togano, K.: Supercond. Sci Technol. 22 (2009) 015003.
18. Glowacki, B.A.: Przeglad Elektrotechn. 85 (2009) 151.
19. Glowacki, B.A.: J. Phys.-Cond. Matt. 21 (2009) 254206.
20. Kario, A.: Supercond. Sci Technol. 23 (2010) 025018.
21. Vinod, K.: Supercond. Sci Technol. 23 (2010) 105002.
22. Hwang SM.: Physica C 470 (2010) 1430.
23. Rostila, L.: J. Supercond. Novel Magnetism 24 (2011) 313.
24. Sandu, V.: J. Applied Phys. 110 (2011) 123921.
25. Sandu, V.: J. Supercond. Novel Magnetism 26 (2013) 125.
26. Wang Q.: Rare Metal Mater. Engn. 42 (2013) 881.
27. Ye, S.J.: Supercond. Sci Technol. 27 (2014) 055017.
28. Sobrero, C.E.: Adv. Cond. Matter Phys. (2015) 297363.
29. Sandu, V.: Supercond. Sci Technol. 29 (2016) 065012.
30. Atamert, S.: IEEE Trans. Applied Supercond. 26 (2016) 6201104.
* 31. Kumakura, H.: In MgB2 superconducting wires. Ed. R. Flückiger. New Jersey: World Sci Publ. 2016. ISBN 978-981-4725-58-3. P. 315.
32. Burdusel, M.: Univ. Politeh. Bucharest Sci Bull. Ser. C 79 (2017) 155.
33. Ahmad, I.: AIP Conf. Proc. 2220 (2020)110022.
34. Ahmad, I.: IEEE Trans. Applied Supercond. 30 (2020) Iss. 8.
35. Ahmad, I.: Physica B 603 (2021) 412675.
36. Dan, X.: Supercond. Sci Technol. 34 (2021) 125009.
37. Tsapleva, A.S.: Phys. Metals Metall. 123 (2022) 839.
Hušek, I., Kováč, P., Grovenor, C., Goodsir, L., : Microhardness as a tool for the filament density and metal sheath analysis in MgB2/Fe/(Cu) wires. Supercond. Sci Technol. 17 (2004) 971-976.
1. Balamurugan, S.: Modern Phys. Lett. B 19 (2005) 793.
2. Aksan, M.A.: Solid State Comm. 137 (2006) 320.
3. Kislyak, I.F.: Problems Atomic Sci Technol. (2009) 107.
4. Sun, Y.Y.: Physica C 477 (2012) 56.
5. Guan, M.Z.: IEEE Trans. Applied Supercond. 22 (2012) 9002404.
6. Sasaki, K.-I.: IEEE Trans. Applied Supercond. 22 (2012) 4500904.
7. Sun, Y.Y.: J. Mater. Sci-Mater. Electron. 24 (2013) 1250.
8. Lin, H.: Sci Rep. 5 (2015) 11506.
9. Xin, C.: J. Supercond. Novel Magnetism 28 (2015) 437.
Pachla, W., Presz, A., Kováč, P., Hušek, I., Diduszko, R., : Structural characterization of multifilament heat treated ex situ MgB2 superconducting wires with Cu and Fe sheaths. Supercond. Sci Technol. 17 (2004) 1289-1294.
* 1. Hyslop, D.: PhD Thesis. Oxford: Oxford Univ. 2005.
2. Li, X.H.: Physica C 463 (2007) 1338.
3. Du, X.J.: IEEE Trans. Applied Supercond. 20 (2010) 2102.
4. Lin, H.: Sci Rep. 5 (2015) 11506.
5. Zhang, Q.: IEEE Trans. Applied Supercond. 26 (2016) 7300304.
6. Liu, S.: Supercond. Sci Technol. 30 (2017) 115007.
7. Sarno da Silva, L.B.: IEEE Trans. Applied Supercond. 29 (2019) 6200505.
8. Guo, W.W.: Supercond. Sci Technol. 34 (2021) 094001.
Hušek, I., Kováč, P., and Jones, H.: Tensile stress applied to NbTi, Nb3Sn, Bi-2223 and MgB2 composite superconductors at room temperature, Supercond. Sci Technol. 17 (2004) 1411-1414.
1. Salama, K.: Supercond. Sci Technol. 18 (2005) S369.
2. Vinod, K.: Supercond. Sci Technol. 20 (2007) R1.
3. Hanna, A.: J. Mater. Process. Technol. 181 (2007) 44.
# 4. Yonezu, A.: Mater. Chem. Phys. 125 (2011) 528.
5. Sun, Y.Y.: Physica C 477 (2012) 56.
6. Sasaki, K.: IEEE Trans. Applied Supercond. 22 (2012) 4500904.
7. Guan, M. Z.: IEEE Trans. Applied Supercond. 22 (2012) 9002404.
8. Sun, Y.: J. Mater. Sci: Mater.Electr. 24 (2013) 1250.
# 9. Sun, Y.: Mater. Sci Forum 745-746 (2013) 173.
10. Xin, C.: J. Supercond. Novel Magnetism 28 (2015) 437.
11. Xin, C.: IEEE Trans. Applied Supercond. 26 (2016) 8401104.
12. Degtyarev, M.V.: Phys. Metals Metall.117 (2016) 772.
13. Jia, S.: IEEE Trans. Applied Supercond. 27 (2017) 8401005.
14. Tanaka, H.: IEEE Trans. Applied Supercond. 28 (2018) 8400605.
15. Karaboga, F.: Mater. Sci Engn. A 721 (2018) 89.
16. Wang, X.: Rev. Sci Instrum. 89 (2018) 085117.
17. Mikhailov, B.P.: Phys. Atomic Nuclei 81 (2018) 1573.
18. Dhakarwal, M.: IEEE Trans. Applied Supercond. 29 (2019) 4802404.
19. Shin, H.-S.: IEEE Trans. Applied Supercond. 29 (2019) 8400805.
20. Wu, B.: IEEE Trans. Applied Supercond. 30 (2020) 4901105.
21. Pan, Y.Z.: J. Low Temp. Phys. 207 (2022) 97.
Kováč, P., Hušek, I., Melišek, T., : The effect of used deformation, metal sheath and heat treatment on the I–V curve of ex situ MgB2 composite. Physica C 401 (2004) 282-285.
* 1. Goldacker, W.: Frontiers in Supercond. Matreials. Ed. A.V. Narlikar. Berlin: Springer 2005.
* 2. Goldacker, W.: Advan. Sci Technol. 47 (2006) 143.
3. Zhang, X.P.: Physica C 468 (2008) 1809.
4. Zhang, X.P.: Physica C 471 (2011) 1124.
5. Yang, H.: Applied Surface Sci 261 (2012) 364.
Gömöry, F., Seiler, E., Šouc, J., Kováč, P., Hušek, I., Farinon, S., Fabbricatore, P., Perkins, G., Caplin, A., Pardo, E., Sanchez, A., Navau, C., : The influence of filament arrangement on current distribution and AC loss in Bi-2223/Ag tapes. Supercond. Sci Technol. 17 (2004) S150-S154.
1. Zhao, Y.F.: J. Low Temp. Phys. 156 (2009) 30.
2. Zhao, Y.F.: J. Low Temp. Phys.159 (2010) 515.
3. Yang, Y.: IEEE Trans. Applied Supercond. 27 (2017) 7912356.
Kováč, P., Hušek, I., Melišek, T., Grivel, J., Pachla, W., Štrbik, V., Diduszko, R., Homeyer, J., and Andersen, N.: The role of MgO content in ex situ MgB2 wires, Supercond. Sci Technol. 17 (2004) L41-L46.
1. Holcomb, M.J.: Physica C 423 (2005) 103.
2. Jiang, C.H.: Physica C 423 (2005) 45.
3. Perner, O.: IEEE Trans. Applied Supercond. 15 (2005) 3192.
4. Perner, O.: Physica C 432 (2005) 15.
* 5. Goldacker, W.: Fronties in Supercond. Matreials. Ed. A.V. Narlikar. Berlin: Springer 2005.
6. Li, F.: Supercond. Sci Technol. 19 (2006) 1073.
7. Chen, S.K.: Applied Phys. Lett. 88 (2006) 192512.
8. Vinod, K.: Supercond. Sci Technol. 20 (2007) R1.
9. Eisterer, M.: Supercond. Sci Technol. 20 (2007) R47.
10. Liang, G.: Physica C 457 (2007) 47.
11. Kumar, R.G.A.: Applied Phys. A 88 (2007) 243.
12. Vinod, K.: Supercond. Sci Technol. 21 (2008) art. no. 025003.
13. Chen, S.K.: Sains Malaysiana 37 (2008) 223.
14. Vignolo, M.: IEEE Trans. Applied Supercond. 18 (2008) 1175.
15. Zhang, X.P.: J. Phys.: Conf. Series 97 (2008).
16. Dancer, C.E.J.: J. European Ceramic Soc. 29 (2009) 1817.
17. Vignolo, M.: IEEE Trans. Applied Supercond. 19 (2009) 2718.
18. Hwang, S.M.: IEEE Trans. Applied Supercond. 19 (2009) 2710.
19. Hwang, S.M.: Physica C 469 (2009) 1523.
20. Ma, Z.Q.: Supercond. Sci Technol. 22 (2009) 125006.
21. Singh, K.: Phys. Status Solidi A 207 (2010) 1456.
22. Dancer, C.E.J.: Supercond. Sci Technol. 23 (2010) 065015.
23. Ojha, N.: Phys. Status Solidi A 207 (2010) 175.
24. Mamalis, A.G.: Supercond. Sci Technol. 23 (2010) 095011.
25. Wang, D.: Supercond. Sci Technol. 24 (2011) 075002.
26. Burdusel, M.: J. Materials Sci 47 (2012) 3828.
27. Tanaka, H.: Supercond. Sci Technol. 25 (2012) 115022.
28. Song, X.: Ceramics Inter. 39 (2013) 4299.
29. Shang, R.: Inter. J. Applied Ceramic Technol. 10 (2013) 849.
30. Kulich, M.: Supercond. Sci Technol. 26 (2013) 105019.
31. Akamaru, S.: Mater. Trans. 54 (2013) 2258.
32. Agil, H.: J.Supercond. Novel Magnet. 26 (2013) SI 1525.
33. Jang, J.-J.: Phys. Procedia 45 (2013) 97.
34. Mustapic, M.: Acta Mater. 80 (2014) 457.
35. Shahabuddin, M.: AIP Adv. 4 (2014) 017113.
36. Prikhna, T. A.: Supercond. Sci Technol. 27 (2014) 044013.
37. Athanasiou-Ioannou, A.: J.Supercond. Novel Magnet. 27 (2014) 1041.
38. Mizutani, S.: Supercond. Sci Technol. 27 (2014) 044012.
39. Wu, F.: J. Low Temp. Phys. 177 (2014) 157.
40. Wang, D.: Physica C 508 (2015) 49.
41. Wang, D.: Supercond. Sci Technol. 28 (2015) 105013.
42. Yang, Y.: Sci Rep. 6 (2016) 29306.
43. Prikhna, T.A.: Low Temp. Phys. 42 (2016) 380.
* 44. Prikhna, T.: In MgB2 superconducting wires. Ed. R. Flückiger. New Jersey: World Sci Publ. 2016. ISBN 978-981-4725-58-3. P. 131.
# 45. Degtyarev, M.V.: Phys. Metals Metall. 117 (2016) 772.
46. Kuznetsova, E.I.: Phys. Solid State 59 (2017) 1695.
47. Chen, S.K.: Vortices Nanostructured Superconductors. Ed. A. Crisan. ISBN 978-3-319-59355-5. Springer 2017. P. 65.
48. Gregor, M.: Applied Surface SCI 461 (2018) SI124.
49. Iwanaka, T.: Supercond. Sci Technol. 32 (2019) 045004.
50. Yang, C.: Ceramics Inter. 45 (2019) 15681.
51. Luo, W.: Supercond. Sci Technol. 32 (2019) 085006.
52. Prikhna, T.: IEEE Trans. Applied Supercond. 29 (2019) 6200905.
53. Krinitsina, T.P.: J. Phys.: Conf. Ser. 1389 (2019) 012068.
54. Matthews, G.A.B.: Supercond. Sci Technol. 33 (2020) 034006.
55. Yang, C.: J. Alloys Comp. 832 (2020) 154561.
56. Zhang, D.: Physica C 578 (2020) 1353749.
57. Yu, X.: Intermetall. 131 (2021) 107104.
58. Capra, M.: IEEE Trans. Applied Supercond. 31 (2021) Iss. 1.
59. Capra, M.: IEEE Trans. Applied Supercond. 31 (2021) Iss. 1.
60. Ran, M.M.: Mater. Character. 189 (2022) 111968.
61. Grigoroscuta, M.A.: J. Magnesium Alloys 10 (2022) 2173.
62. Hapipi, N.M.: Applied Phys. A 128 (2022) 913.
63. Wan, F.J.: Applied Phys. 133 (2023) 023905.
64. Maeda, M.: J. Alloys Comp. 954 (2023) 170148.
65. Luo, J.S.: Applied Phys. A 129 (2023) 284.
66. Changkun, Y.: Intermetall. 160 (2023)107938.
67. Yang, C.K.: Supercond. Sci Technol. 36 (2023) 065001.
68. Muralidhar, M.: J. Phys. D 57 (2024) 053001.
Kováč, P., Dhalle, M., Melišek, T., van Eck, H., Wessel, S., ten Haken, B., and Hušek, I.: Dependence of the critical current in ex situ multi- and mono-filamentary MgB2/Fe wires on axial tension and compression, Supercond. Sci & Technol. 16 (2003) 600-607.
1. Fu, M.Y.: Physica C 406 (2004) 53.
2. Sugano, M.: Supercond. Sci Technol. 18 (2005) 369.
3. Eisterer, M.: J. Applied Phys. 98 (2005) 033906.
4. Li, X.H.: Physica C 463 (2007) 1338.
5. Sugano, M.: Supercond. Sci Technol. 21 (2008) 115019.
6. Arda, L.: J. Alloys Compounds 470 (2009) 404.
7. Malachevsky, M.T.: IEEE Trans. Applied Supercond. 19 (2009) 2730.
8. Sugano, M.: Supercond. Sci Technol. 23 (2010) 085013.
9. Yonezu, A.: Materials Chem. Phys. 125 (2011) 528.
10.Wang, Q.: Physica C 484 (2013) 163.
11. Konstantopoulou, K.: Supercond. Sci Technol. 29 (2016) 084005.
12. Al Amin, A.: Supercond. Sci Technol. 29 (2016) 055008.
13. Cai, Q.: J. Mater. Sci-Mater. in Electron. 27 (2016) 9431.
14. Avronsart, J.: IEEE Trans. Applied Supercond. 28 (2018) 6200305.
15. Sosnowski, J.: Acta Phys. Polonica A 134 (2018) 1194.
16. Shin, H.-S.: IEEE Trans. Applied Supercond. 29 (2019) 8400805.
17. Mattje, V.M.: Periodico Tche Quimica 16 (2019) 301.
18. Luo, W.: Supercond. Sci Technol. 32 (2019) 085006.
19. Dhakarwal, M.: IEEE Trans. Applied Supercond. 29 (2019) 4802404.
20. Iwanaka, T.: Japan. J. Applied Phys. 62 (2023) 025501.
Pachla, W., Kováč, P., Diduszko, R., Mazur, A., Hušek, I., Morawski, A., Presz, A., : Effects of the high-pressure treatment of ex situ MgB2 superconductors. Supercond. Sci Technol. 16 (2003) 7-13.
1. Belevtsov, L.V.: Phys. Status Solidi B 237 (2003) 523.
2. Belevtsov, L.V.: Europhysics Lett. 67 (2004) 648.
3. Anan’ev, S.P.: Supercond. Sci Technol. 17 (2004) S274.
* 4. High, S.: PhD Thesis. Oxford: Oxford Univ. 2004.
5. Dubitskiy, G.A.: JETP Lett. 81 (2005) 260.
6. Lezza, P.: Supercond. Sci Technol. 19 (2006) 286.
7. Senatore, C.: J. Applied Phys. 100 (2006) 113913.
8. Dubitsky, G.: Zeitschrift Naturforschung B 61 (2006) 1541.
9. Lezza, P.: IEEE Trans. Applied Supercond. 17 (2007) 2834.
10.Eisterer, M.: Supercond. Sci Technol. 20 (2007) R47.
* 11. Lezza, P.: PhD Thesis. Univ. of Geneve 2007.
12. Hossain, M.S.A.: Supercond. Sci Technol. 22 (2009) 095004.
13. Cui, Y.J.: Phys. Status Solidi A 207 (2010) 2532.
* 14. Hossain, S.M.A.: In MgB2 superconducting wires. Ed. R. Flückiger. New Jersey: World Sci Publ. 2016. ISBN 978-981-4725-58-3. P. 289.
15. Cheng, F.: J. Alloys Compounds 727 (2017) 1105.
16. Gao, Z.L.: J. Europ. Ceramic Soc 42 (2022) 7481.
Fabbricatore, P., Greco, M., Musenich, R., Kováč, P., Hušek, I., Gömöry, F., : Influence of the sintering process on critical currents, irreversibility lines and pinning energies in multifilamentary MgB2 wires. Supercond. Sci Technol. 16 (2003) 364-370.
1. Martinez, E.: Applied Physics Lett. 85 (2004) 1383.
2. Liu, S.L.: Solid State Comm. 133 (2005) 615.
3. Horvat, J.: Supercond. Sci Technol. 18 (2005) 682.
4. Horvat J.: Applied Phys. Lett. 87 (2005) 102503.
5. Grinenko, V.: Solid State Comm. 138 (2006) 461.
6. Liu, S.L.: Physica Status Solidi B 243 (2006) 1314.
7. Liu, S.L.: Supercond. Sci Technol. 20 (2007) 444.
8. Kumar, R.G.A.: Supercond. Sci Technol. 20 (2007) 222.
9.Eisterer, M.: Supercond. Sci Technol. 20 (2007) R47.
10. Gozzelino, L.: Physica C 460 (2007) 604.
11. Gozzelino, L.: IEEE Trans. Applied Supercond. 17 (2007) 2726.
12. Agostino, A.: IEEE Trans. Applied Supercond. 17 (2007) 2774.
* 13. van Weeren, H.: PhD Thesis. Enschede: 2007.
14. Liu, S.L.: J. Supercond. Novel Magnetism 21 (2008) 199.
15. Dancer, C.E.J.: J. European Ceramic Soc. 29 (2009) 1817.
16. Yucel, E.: J. Materials Sci-Mater. Electr. 22 (2011) 1143.
17. Li, G.: IEEE Trans. Applied Supercond. 24 (2014) 6200105.
Kováč, P., Hušek, I., Melišek, T., Ahoranta, M., Šouc, J., Lehtonen, J., and Gömöry, F.: Magnetic interaction of an iron sheath with a superconductor, Supercond. Sci Technol. 16 (2003) 1195-1201.
1. Horvat, J.: Supercond. Sci Technol. 18 (2005) 682.
2. Horvat J.: Applied Phys. Lett. 87 (2005) 102503.
3. Alamgir, A.K.M.: Physica C 432 (2005) 153.
4. Stenvall A.: Supercond. Sci Technol. 19 (2006) 581.
5. Majoros, M.: J. Phys.: Conf. Series 43 (2006) 564.
6. Gu, C.: Supercond. Sci Technol. 20 (2007) 133.
7. Aladyshkin, A.Y.: Supercond. Sci Technol. 22 (2009) 053001.
8. Lousberg, G.P.: IEEE Trans. Applied Supercond. 20 (2010) 33.
9. Ainslie, M.D.: IEEE Trans. Applied Supercond. 23 (2013) 4700104.
# 10. Cicek, A.: In Progress in Exergy, Energy, and the Environment. Springer 2014. ISBN: 978-3-319-04680-8. P. 453.
11. Ainslie, M. D.: Supercond. Sci Technol. 28 (2015) 053002.
12. Philippe, M. P.: Supercond. Sci Technol. 28 (2015) 095008.
13. Fareed, M.U.: IEEE Trans. Applied Supercond. 29 (2019) 5900705.
14. Ainslie, M.D.: Supercond. Sci Technol. 32 (2019) 030501.
15. Ainslie, M.: Numer. Modell. Bulk Supercond. Magnet. IoP Publ. 2020. ISBN: 978-0-7503-1333-9.
16. Fareed, M.U.: Materials 14 (2021) 6204.
17. Kapolka, M.: Sci Rep. 12 (2022) 7030.
18. Balachandran, T.: IEEE Trans. Applied Supercond. 32 (2022) 4702407.
Kováč, P., Hušek, I., Grovenor, C., Salter, C., : Properties of as-deformed and post-annealed MgB2/Fe(Fe-alloy) composite wires. Supercond. Sci Technol. 16 (2003) 292-296.
* 1. Horvath, J.: Horizonts in Supercond. Res. Ed. F. Columbus. Nova Sci Publ. 2003.
* 2 . Goodsir, L.: PhD Thesis. Oxford: Oxford Materials 2003.
3. Wang, X.L.: Supercond. Sci Technol. 17 (2004) L21.
* 4. High, S.: PhD Thesis. Oxford: Oxford Univ. 2004.
5. Xu, X.L.: Physica C 419 (2005) 94.
6. Lezza, P.: IEEE Trans. Applied Supercond. 15 (2005) 3196.
7. Lezza, P.: Supercond. Sci Technol. 18 (2005) 753.
* 8. Hyslop, D.: PhD Thesis. Oxford: Oxford Univ. 2005.
* 9. Goldacker, W.: Fronties in Supercond. Matreials. Ed. A.V. Narlikar. Berlin: Springer 2005.
10. Lezza, P.: Supercond. Sci Technol. 19 (2006) 286.
11. Suo, H.: Acta Metallurgica Sinica 42 (2006) 1121.
12. Xu, H.L.: Physica C 443 (2006) 5.
13. Lezza, P.: Supercond. Sci Technol. 19 (2006) 1030.
* 14. Goldacker, W.: Adv. Sci Technol. 47 (2006) 143.
15. Kumar, R.G.A.: Supercond. Sci Technol. 20 (2007) 222.
16. Xu, H.L.: J. Supercond. Novel Magnetism 20 (2007) 255.
17. Varghese, N.: J. Applied Phys. 102 (2007) art. no. 043914.
18. Lezza, P.: IEEE Trans. Applied Supercond. 17 (2007) 2834.
19. Schlachter, S.I.: IEEE Trans. Applied Supercond. 17 (2007) 2842.
* 20. van Weeren, H.: PhD Thesis. Enschede: 2007.
* 21. Lezza, P.: PhD Thesis. Univ. of Geneve 2007.
22. Jung, A.: Supercond. Sci Technol. 23 (2010) 095006.
Kováč, P., Ahoranta, M., Melišek, T., Lehtonen, J., Hušek, I., : The effect of Fe-magnetization on Ic(B) and Ic(α) characteristics of iron-sheathed MgB2 composite wires. Supercond. Sci Technol. 16 (2003) 793-798.
1. Balamurugan, S.: Modern Phys. Lett. B 18 (2004) 791.
2. Horvat J.: Applied Phys. Lett. 87 (2005) 102503.
3. Horvat, J.: Supercond. Sci Technol. 18 (2005) 682.
4. Balamurugan, S.: Modern Phys. Lett. B 19 (2005) 793.
* 5. Dou, S.X.: Frontiers in Supercond. Matreials. Ed. A.V. Narlikar. Berlin: Springer 2005.
6. Stenvall A.: Supercond. Sci Technol. 19 (2006) 581.
7. Gu, C.: Supercond. Sci Technol. 20 (2007) 133.
8. Du, X.J.: IEEE Trans. Applied Supercond. 20 (2010) 2102.
Kováč, P., Ahoranta, M., Lehtonen, J., Hušek, I., : The Ic(B) behavior of MgB2 composite with ferromagnetic sheath. Physica C 397 (2003) 14-18.
1. Gomory, F.: Applied Phys. Lett. 89 (2006) 072506.
2. Gomory, F.: J. Phys.: Conf. Series 97 (2008).
Diantoro, M., Loeksmanto, W., Tjia, M., Gömöry, F., Šouc, J., Hušek, I., Kováč, P., : AC loss and critical current density in Bi-2223 tapes with oxide additives and reinforced Ag sheaths. Physica C 378-381 (2002) 1143-1147.
1. Zhu, Q.: Supercond. Sci Technol. 17 (2004) 756.
2. Azman, N.J.: Adv. Cond. Matter Phys. (2014) 498747.
3. Awad, M.A.: Mater. Lett. 268 (2020) 127626.
4. Birtane, H.: Polymer Bull. 80 (2023) 5353.
Pardo, E., Sanchez, A., Navau, C., Gömöry, F., Hušek, I., Strýček, F., Tebano, R., Kováč, P., : Critical current and ac susceptibility in superconducting tapes with elliptical cross-section. Physica C 372-376 (2002) 1788-1791.
1.Chen, D.X.: Measurement Sci Technol. 15 (2004) 1195.
2. Seiler, E.: J. Phys.: Conf. Series 97 (2008) 012028.
Gömöry, F., Tebano, R., Sanchez, A., Pardo, E., Navau, C., Hušek, I., Strýček, F., and Kováč, P.: Current profiles and ac losses of a superconducting strip with an elliptic cross-section in a perpendicular magnetic field, Supercond. Sci Technol. 15 (2002) 1311-1315.
* 1. Kajikawa, K.: IoP Conf. Ser. No 181 (2004) 2021.
2. Kajikawa, K.: Physica C 412-14 (2004) 1045.
3. Kajikawa, K.: Supercond. Sci Technol. 17 (2004) 555.
4. Kajikawa, K.: Cryogenics 45 (2005) 289.
5. Yampolskii, S.V.: J. Phys.: Conf. Series 43 (2006) 576.
6. Seiler, E.: Acta Physica Polonica 113 (2008) 379.
7. Seiler, E.: J. Phys.: Conf. Series 97 (2008) 012028.
8. Zhang, X.W.: Applied Phys. Lett. 92 (2008) 181101.
9. Campbell, A.M. : Supercond. Sci Technol. 22 (2009) 034005.
10. Vanderbemden, P.: Supercond. Sci Technol. 23 (2010) 075006.
11. Mawatari, Y.: Phys. Rev. B 83 (2011) 134512.
12. Rostila, L.: J. Supercond. Novel Magnetism 24 (2011) 313.
13. Ruiz, H. S.: Applied Phys. Lett. 100 (2012) 112602.
14. Ruiz, H. S.: IEEE Trans. Applied Supercond. 23 (2013) 8000404.
15. Ruiz, H. S.: J. Applied Phys. 113 (2013) 193906.
* 16. Kovac, J.: In MgB2 superconducting wires. Ed. R. Flückiger. New Jersey: World Sci Publ. 2016. ISBN978-981-4725-58-3. P. 419.
17. Farinon, S.: Cryogenics 81 (2017) 107.
18. Robert, B.C.: IEEE Trans. Applied Supercond. 28 (2018) 8200805.
19. Robert, B. C.: Supercond. Sci Technol. 31 (2018) 035006.
20. Fareed, M.U.: IEEE Trans. Applied Supercond. 29 (2019) 5900705.
Kováč, P., Hušek, I., Kopera, Ľ., Melišek, T., van Eck, H., Metz, B., ten Haken, B., : Electrical and mechanical properties of Bi-2223/Ag tapes made by TIRT technique. Physica C 372-376 (2002) 891-894.
1. Ahoranta, M.: Supercond. Sci Technol. 22 (2009) 015012.
Kováč, P., Hense, K., Melišek, T., Hušek, I., Kirchmayr, H., : Ic anisotropy and Ic hysteresis in MgB2/Fe/Cu tape. Supercond. Sci Technol. 15 (2002) 1037-1039.
1. Chen, L.P.: Chinese Phys. Lett. 24 (2007) 2074.
2. Chen, L.P.: Supercond. Sci Techn. 24 (2011) 015002.
Gömöry, F., Šouc, J., Fabbricatore, P., Farinon, S., Strýček, F., Kováč, P., Hušek, I., : Magnetic hysteresis loss in Bi-2223/Ag tapes with different filament arrangement. Physica C 371 (2002) 229-236.
1. Pardo, E.: Phys. Rev. B 67 (2003) 104517.
2. Chen, D.: Supercond. Sci Technol. 17 (2004) 1477.
3. Pardo, E.: Supercond. Sci Technol. 17 (2004) 537.
4. Gencer, A.: Physica C 445 (2006) 772.
5. Odintsov, D.S.: J. Experimen. Theoret. Phys. 103 (2006) 66.
6. Oku, T.: Nanotechnol. Rev. 3 (2014) SI413.
# 7. Oku, T.: Perovskite Ceramics: Recent Advances and Emerging Applications. ISBN: 978-0-323-90586-2. Elsevier 2023, pp. 155-218.
Jirsa, M., Yurchenko, V., Novák, V., Kováč, P., Hušek, I., : Peculiarities of induced inter-granular currents in Bi-2223/Ag tapes. Physica C 372-376 (2002) 1855-1858.
1. Ding, Y.: J. Alloys Compounds 509 (2011) 1424.
Kováč, P., Hušek, I., : Reactivity and oxygen diffusion property of resistive barriers for Bi-2223/Ag tapes. Physica C 383 (2002) 55-58.
1. Ayai, N.: Physica C 392 (2003) 1003.
2. Terzioglu, C.: Physica C 434 (2006) 153.
Pachla, W., Diduszko, R., Kováč, P., Hušek, I., and Presz, A.: Spatial structure and composition homogeneity in Bi-2223 TIRT tapes, Physica C 371 (2002) 291-300.
* 1. Masti, M.: PhD Thesis. Tampere: Tampere Univ. Technol. 2006.
2. Yang, Y.: IEEE Trans. Applied Supercond. 27 (2017) 7912356.
Pachla, W., Presz, A., Diduszko, R., Kováč, P., Hušek, I., : Structural inhomogeneity of superconducting ex situ MgB2/Cu wires made by the powder-in-tube technique. Supercond. Sci Technol. 15 (2002) 1281-1287.
1. Eisterer, M.: Supercond. Sci Technol. 20 (2007) R47.
2. Wang, Q.Y.: Rare Metal Mater. Engn. 36 (2007) 977.
3. Liu G: Rare Metal Mater. Engn. 42 (2013) 396.
4. Xu, D.: Supercond. Sci Technol. 29 (2016) 045009.
5. Xu, D.: Supercond. Sci Technol. 29 (2016) 105019.
6. Hapipi, N.M.: Applied Phys. A 128 (2022) 913.
Kováč, P., Hušek, I., Pachla, W., Melišek, T., Diduszko, R., Fröhlich, K., Morawski, A., Presz, A., Machajdík, D., : Structure, grain connectivity and pinning of as-deformed commercial MgB2 powder in Cu and Fe/Cu sheaths. Supercond. Sci Technol. 15 (2002) 1127-1132.
1. Feng, Y.: Supercond. Sci Techn. 16 (2003) 682.
2. Feng, Y.: Physica C 386 (2003) 598.
3. Yamamoto, K.: Supercond. Sci Techn. 16 (2003) 1052.
4. Feng, Y.: J. Physics-Cond. Matt. 15 (2003) 6395.
# 5. Feng, Y.: Tsinghua Sci Technol. 8 (2003) 316.
# 6. Nesterenko, V.F.: Process. Fabrication Advanced Mater. XII (2003) 40.
* 7. Horvath, J.: Horizonts in Supercond. Res. Nova Sci Publ. 2003.
* 8. Goodsir, L.: PhD Thesis. Oxford: Oxford Materials 2003.
9. Feng, Y.: J. Physics-Cond. Matt. 16 (2004) 1803.
* 10. High, S.: PhD Thesis. Oxford: Oxford Univ. 2004.
11. Feng, Y.: Physica C 426 (2005) 1216.
* 12. Hyslop, D.: PhD Thesis. Oxford: Oxford Univ. 2005
* 13. Goldacker, W.: Fronties in Supercond. Matreials. Berlin: Springer 2005.
14. Liang, G.: Physica C 442 (2006) 113.
15. Liang, G.: J. Alloys Compounds 422 (2006) 73.
* 16. Goldacker, W.: Adv. Sci Technol. 47 (2006) 143.
17. Kumar, R.G.A.: Supercond. Sci Technol. 20 (2007) 222.
18. Varghese, N.: J. Applied Phys. 102 (2007) art. no. 043914.
19. Wang, Q.Y.: Rare Metal Mater. Engn. 36 (2007) 977.
20. Yan, G.: Beijing Inter. Materials Week 2006. 546-549 (2007) 1913.
21. Aldica, G.: J. Phys.: Conf. Series 150 (2009) 052006.
22. Yang, H.: Applied Surface Sci 261 (2012) 364.
23. Mizutani, S.: Supercond. Sci Technol. 27 (2014) 044012.
24. Mizutani, S.: Supercond. Sci Technol. 27 (2014) 114001.
# 25. Wang, D.: Xiyou Jinshu/Chin. J. Rare Metals 41 (2017) 445.
# 26. Erdem, U.: J. Mater. Sci: Mater. Electron. 32 (2021) 28587.
Kováč, P., Hušek, I., Melišek, T., Metz, B., van Eck, H., ten Haken, B., : Transport currents in Bi-2223/Ag tapes made using the tape-in-rectangular tube process, current distribution and Ic stress degradation. Supercond. Sci Technol. 15 (2002) 624-629.
1. Usak, P.: Physica C 384 (2003) 93.
2. Inada, R.: Physica C 392 (2003) 1091.
3. Inada, R.: IEEE Trans. Appl. Supercond. 13 (2003) 3618.
4. Yang, B.: J. Modern Optic 51 (2004) 619.
* 5. Masti, M.: PhD Thesis. Tampere: Tampere Univ. Technol. 2006.
6. Demencik, E.: Supercond. Sci Technol. 19 (2006) 848.
7. Usak, P.: J. Phys.: Conf. Series 43 (2006) 55.
Kováč, P., Hušek, I., Melišek, T., : Transport currents of two-axially rolled and post-annealed MgB2/Fe wires at 4.2 K. Supercond. Sci Technol. 15 (2002) 1340-1344.
1. DeFouw, J.D.: Applied Phys. Lett. 83 (2003) 120.
2. Yan, G.: Chinese Sci Bulletin 48 (2003) 1331.
* 3. Senatore, C.: IoP Conf. Ser. No 181 (2004) 2494.
4. Horvat, J.: Applied Phys. Lett. 84 (2004) 3109.
5. Wang, X.L .: Supercond. Sci Technol. 17 (2004) L21.
* 6. High, S.: PhD Thesis. Oxford: Oxford Univ. 2004.
7. Sumption, M.D.: Supercond. Sci Technol. 18 (2005) 730.
* 8. Hyslop, D.: PhD Thesis. Oxford: Oxford Univ. 2005
9. Sumption, M.D.: Supercond. Sci Technol. 19 (2006) 155.
10.Eisterer, M.: Supercond. Sci Technol. 20 (2007) R47.
11. Yan, S.C.: Physica C 466 (2007) 96.
12. Haessler, W.: IEEE Trans. Applied Supercond. 17 (2007) 2919.
* 13. van Weeren, H.: PhD Thesis. Enschede: 2007.
14. Dancer, C.E.J.: J. European Ceramic Soc. 29 (2009) 1817.
15. DeFouw, J.D.: Acta Materialia 57 (2009) 4745.
16. Dancer, C.E.J.: Supercond. Sci Technol. 23 (2010) 065015.
17. Dancer, C.E.J.: Ceramic Engn. Sci Proc. 32 (2011) 111.
18. Lyly, M.: IEEE Trans. Applied Supercond. 23 (2013) 8200909.
19. Ishmael, S.A.: IEEE Trans. Applied Supercond. 25 (2015) 6200908.
20. Ulgen, A.T.: J. Supercond. Novel Magnetism 30 (2017) 3367.
21. Erdem, U.: J. Mater Sci-Mater. in Electron. 32 (2021) 28587.
22. Kapolka, M.: IEEE Trans. Applied Supercond. 32 (2022) 6200305.
Kováč, P., Hušek, I., Kopera, Ľ., van der Meer, O., Metz, B., ten Haken, B., Kvitkovič, J., and Polák, M.: Transversal and longitudinal current distribution in Bi-2223/Ag tapes with high filament aspect ratio, Physica C 372-376 (2002) 916-918.
1. Takacs, S.: Supercond. Sci Technol. 15 (2002) 1377.
2. Talantsev, E.F.: AIP Adv. 7 (2017) 125230.
3. Talantsev, E.F.: Sci Rep. 8 (2018) 14463.
4. Talantsev, E.F.: Mater. Res. Express 6 (2019) 026002.
5. Talantsev, E.F.: Modern Phys. Lett. B 35 (2021) 2150226.
Kováč, P., Hušek, I., Melišek, T., Kawano, K., Abell, S., : BSCCO/Ag tapes made by a tape-in-rectangular tube process. Supercond. Sci Technol. 14 (2001) 139-144.
1. Farinon, S.: IEEE Trans. Applied Supercond. 11 (2001) 2776.
2. Stavrev, S.: Physica C 378 (2002) 1091.
3. Gomory, F.: Physica C 372 (2002) 1028.
* 4. Stavrev, S.: PhD Thesis. Lausanne: EPFL 2002.
5. Inada, R.: Physica C 392 (2003) 1091.
6. Inada, R.: IEEE Trans. Applied Supercond. 13 (2003) 3618.
7. Fedor, J.: Rev. Scientific Instrum. 74 (2003) 5105.
8. Inada, R.: Frontiers Supercond. Materials 3 (2004) 113.
# 9. Guo, R.-C.: Dongbei Daxue Xuebao/J. Northeastern Univ. 25 (2004) 863.
* 10. Masti, M.: PhD Thesis. Tampere: Tampere Univ. Technol. 2006.
11. Ahoranta, M.: Supercond. Sci Technol. 22 (2009) 015012.
12. Yao, C.: J. Mater. Chem. C 11 (2023) 1470.
Pachla, W., Kováč, P., Hušek, I., Diduszko, R., Presz, A., : Effect of starting precursor on Ic anisotropy in powder-in-tube (Bi, Pb)2223/Ag tapes. Supercond. Sci Technol. 14 (2001) 631-636.
1. Yakinci, Z.D.: Physica C 408-410 (2004) 900.
Kováč, P., Hušek, I., Melišek, T., Pachla, W., Diduszko, R., : Filament aspect ratio and transport currents of Bi(2223)/Ag at 77 K. Physica C 349 (2001) 179-188.
1. Majoros, M.: Supercond. Sci Technol. 14 (2001) 353.
2. Seiler, E.: Physica C 372 (2002) 1797.
Kováč, P., Hušek, I., Pachla, W., Diantoro, M., Bonfait, G., Maria, J., Fröhlich, K., Kopera, Ľ., Diduszko, R., and Presz, A.: Material for resistive barriers in Bi-2223/Ag tapes, Supercond. Sci Technol. 14 (2001) 966-972.
1. Nakamura, Y.: Physica C 445 (2006) 726.
2. Machida, T.: Physica C 468 (2008) 1764
3. Nakamura, Y.: Physica C 469 (2009) 1496.
4. Nakamura, Y.: Physica C 470 (2010) 1369.
5. Paramarta, I. B.A.: IOP Conf. Ser.-Mater. Sci Engn. 515 (2019) 012022.
6. Suardana, P.: IOP Conf. Ser.-Mater. Sci Engn. 515 (2019) 012066.
7. Suharta, W.G.: IOP Conf. Ser.-Mater. Sci Engn. 515 (2019) 012037.
8. Awad, M.A.: Mater. Lett. 268 (2020) 127626.
Gömöry, F., Frolek, L., Šouc, J., Laudis, A., Kováč, P., Hušek, I., : Partitioning of transport AC loss in a superconducting tape into magnetic and resistive components. IEEE Trans. Applied Supercond. 11 (2001) 2967-2930.
* 1. Rabbers,, J.J.: PhD Thesis. Enschede, Twente Univ. 2001.
* 2. Schönborg, N.: PhD Thesis. Stockholm: Royal Inst. Technol. 2001.
3. Schonborg, N.: IEEE Trans. on Appl. Supercond. 11 (2001) 4078.
* 4. Stavrev, S.: PhD Thesis. Lausanne: EPFL 2002.
5. Sjostrom, M.: IEEE Trans. Appl. Supercond. 13 (2003) 1890.
6. Zhang, G.M.: Chinese Physics 12 (2003) 553.
7. Takács, S.: Physica C 401 (2004) 187.
8. Baldan, C.: IEEE Trans. Applied Supercond. 14 (2004) 863.
9. Suarez P.: J. Phys.: Conf. Series 97 (2008).
10. Suarez, P.: IEEE Trans. Applied Supercond. 19 (2009) 2395.
11. Ceballos, J.M: Emerging Trends Technol. Innov. 314 (2010) 487.
12. Suarez, P.: IEEE Trans. Applied Supercond. 21 (2011) 1267.
13. Dai, J.S.: IEEE ASEMD 2013 6780723, pp. 124.
14. Dai, J.S.: IEEE Trans. Applied Supercond. 24 (2014) 9002104.
15. Demencik, E.: IEEE Trans. Applied Supercond. 26 (2016) 9001004.
16. Rangaiah, P.K.B.: Proc. European Conf. Antennas Propagation – EUCAP 2020.
Diantoro, M., Tjia, M.O., Kováč, P., and Hušek, I.: Pinning mechanism in Bi-2223 tapes with reinforced Ag sheath and oxide additives in the core, Physica C 357-360 (2001) 1182-1185.
1. Hendrik, S.P.: IOP Conf. Ser. 202 (2017) 012025.
2. Awad, M.A.: Mater. Lett. 268 (2020) 127626.
Kováč, P., Huang, Y., Hušek, I., Spiller, D., Bukva, P., : The effect of intermediate deformation by eccentric rolling on the Jc(B) performance of multicore Bi-2223/Ag tapes. Physica C 356 (2001) 53-61.
1. Feng, R.B.: Physica C 386 (2003) 182.
2. Bourgault, D.: Supercond. Sci Technol. 17 (2004) 463.
3. Yuan, G.: Frontiers Supercond. Materials 3 (2004) 121.
Gömöry, F., Hušek, I., Kováč, P., Kopera, Ľ., : AC susceptibility, critical densities and AC losses of Bi-2223/Ag tapes in perpendicular AC magnetic field. In: Studies in High-Temperature Phys. Vol. 32. Ed. A.Narlikar. New York: Nova Sci. Publ. 2000. P. 63.
1. Hu, L.: Physica C 392 (2003) 1102.
* 2. Diantoro, M.: PhD Thesis. Bandung: IT 2004.
Pitel, J., Kováč, P., Hušek, I., : Calculation of the critical currents of Bi(2223)/Ag tapes and coils with reduced anisotropy in Ic(B) characteristic — effect of different proportional representations of the filaments oriented parallel and perpendicularly to the tape surface. Physica C 330 (2000) 130-140.
1. Usak, P.: Sixth Cryogenics 2000. P. 60.
2. Yamaguchi, M.: IEEE Trans. Applied Supercond. 13 (2003) 1848-1851.
3. Ahn, M.C.: IEEE Trans. Appl. Supercond. 13 (2003) 2080-2083.
4. Usak, P.: Supercond. Sci. Technol. 16 (2003) 459-463.
5. Higashikawa, K.: Physica C 419 (2005) 129.
6. Usak, P: J. Phys.: Conf. Series 43 (2006) 55.
7. Watanabe, M.: IEEE Trans. Appl. Supercond. 17 (2007) 2002.
# 8. Koo, M.: Trans. Korean Inst. Electrical Engn. 57 (2008) 1970.
# 9. Kang, M.: Trans. Korean Inst. Electrical Engn. 58 (2009) 502.
10. Kang, M.: IEEE Trans. Applied Supercond. 19 (2009) 1257.
11. Tsuzuki, K.: IEEE Trans. Applied Supercond. 23 (2013) 4603304.
Pachla, W., Diduszko, R., Kováč, P., Hušek, I., : Distribution of inhomogeneities across the ceramic core in monocore (Bi,Pb)-2223/Ag tapes. Supercond. Sci Technol. 13 (2000) 373-377.
1. Warmont, F.: Supercond. Sci Technol. 14 (2001) 145.
2. Yang, B.: J. Modern Optic 51 (2004) 619.
Kováč, P., Hušek, I., Gömöry, F., Oduleye, O., Pachla, W., Diduszko, R., McN Alford, N., : Electrical and mechanical properties of Bi-2223/Ag/barrier/Ag composite tapes. Supercond. Sci Technol. 13 (2000) 378-384.
1. Eckelmann, H.: Physica C 355 (2001) 278.
2. Hassler, W.: IEEE Trans. Applied Supercond. 11 (2001) 2951.
3. Takacs, S.: Supercond. Sci Technol. 15 (2002) 1377.
4. Goldstein, R.J.: Int. J. Heat & Mass Transfer 45 (2002) 2853.
5. Hu, L.: Physica C 392 (2003) 1102.
# 6. Parinov, I.A.: In: Microstructure and Properties of High-Temperature Superconductors. Berlin: Springer-Verlag 2007. ISBN 978-3-540-70976-3.
7. Nakamura, Y.: Physica C 470 (2010) 1369.
# 8. Parinov, I.A.: In: Microstructure and Properties of High-Temperature Superconductors. Berlin: Springer-Verlag 2012. 2nd ed. ISBN: 978-3-642-34440-4.
Hušek, I. and Kováč, P.: Evaluation of core density during the two-axial rolling of BSCCO/Ag composite, Supercond. Sci Technol. 13 (2000) 385-390.
1. Witz, G.: IEEE Trans. Applied Supercond. 11 (2001) 3744.
2. Ha, H.S.: IEEE Trans. Applied Supercond. 11 (2001) 3748.
3. Witz, G.: Physica C 357-360 (2001) 1119.
4. Chen, W.M.: J. Supercond. 14 (2001) 539.
5. Beneduce, C.: Physica C 372 (2002) 980.
6. Lu, Y.J.: Chinese J. Mechanical Engn. 22 (2009) 890.
7. Lu, Y.J.: J. Materials Sci 45 (2010) 3514.
8. Lu, Y.: Rare Metal Mater. Engn.42 (2013) 536.
9. Ma, X.: J. Supercond. Novel Magnetism 31 (2018) 3105.
Gömöry, F., Šouc, J., Laudis, A., Kováč, P., Hušek, I., : Experimental study of the effect of filament orientation on transport and magnetic ac loss in Bi-2223/Ag multifilamentary tapes. Supercond. Sci Technol. 13 (2000) 1580-1586.
1. Inada, R.: Physica C 382 (2002) 117.
2. Inada, R.: Physica C 378 (2002) 1133.
3. Inada, R.: Proc. Mater. Research Soc. Symp. 689 (2002) 193.
4. Pardo, E.: IEEE Trans. Applied Supercond. 13 (2003) 3566.
5. Pardo, E.: Phys. Rev. B 67 (2003) 104517.
6. Inada, R.: Proc. Mater. Research Soc. Symp. (2004) 113.
7. Pardo, E.: Phys. Rev. B 71 (2005) 134517.
8. Celebi, S.: Supercond. Sci Technol. 23 (2010) 025021.
9. Huang, C.-G.: J. Low Temp. Phys. 172 (2013) 59.
10. Yang, Y.: IEEE Trans. Applied Supercond. 27 (2017) 7912356.
Kováč, P., Richens, P., Bukva, P., Jones, H., Hušek, I., : Applied rolling and sensitivity of Bi(2223)/Ag tapes on Ic degradation by mechanical stress Supercond. Sci Technol. 12 (1999) 168-171.
* 1. Rabara M.: Doctoral disertation. Univ. Tokyo, 1999.
2. Sobha, : Supercond. Sci Technol. 13 (2000) 1487.
3. Witz, G.: Inst. Phys. Conf. Ser. No 167 (2000) 863.
4. Kvitkovič, J.: Inst. Phys. Conf. Ser. No 167 (2000) 523.
5. Beilin, V.: Inst. Phys. Conf. Ser. 167 (2000) 665.
6. Chen, W.M.: J. Supercond. 14 (2001) 539.
7. Kitaguchi, H.: Physica C 357 (2001) 1193.
8. Kitaguchi, H.: IEEE Trans. Applied Supercond. 11 (2001) 3058.
9. Chen, W.M.: IEEE Trans. Applied Supercond. 11 (2001) 3752.
10. Kitaguchi, H.: IEEE Trans. Applied Supercond. 12 (2002) 1141.
11. Chen, W.M.: Advances Cryogenic Engn. 48a, B 614 (2002) 748.
12. Shin, H.S.: Supercond. Sci Technol. 16 (2003) 1012.
13. Oh, S.S.: Supercond. Sci Technol. 17 (2004) 130.
# 14. Parinov, I.A.: In: Microstructure and Properties of High-Temperature Superconductors. Berlin: Springer-Verlag 2007. ISBN 978-3-540-70976-3.
# 15. Parinov, I.A.: In: Microstructure and Properties of High-Temperature Superconductors. Berlin: Springer-Verlag 2012. 2nd ed. ISBN: 978-3-642-34440.
Kováč, P., Cesnak, L., Melišek, T., Hušek, I., Bukva, P., Pitel, J., Kopera, Ľ., Pachla, W., Bucholtz, W., : Currents in series and parallel connections of small inner bore coils wound from Bi(2223)/Ag tapes and treated by the wind and react technique Supercond. Sci Technol. 12 (1999) 507-513.
1. Sneary, A.B.: Supercond. Sci Technol. 14 (2001) 433.
2. Belenli, I. : Supercond. Sci. Technol. 16 (2003) 39.
3. Yuan, J.: Medical Engn. Phys. 29 (2007) 442.
Cesnak, L., Melišek, T., Kováč, P., Hušek, I., : Equivalent scheme for the V-I characteristics of Bi-2223/Ag tapes at 77 K Supercond. Sci Technol. 12 (1999) 491-498.
1. Spal, R.D.: Applied Phys. Lett. 80 (2002) 1412.
2. Lau, K.T.: J. Materials Sci 16 (2005) 17.
3. Lau, K.T.: J. Applied Phys. 99 (2006) 123904.
Kováč, P., Hušek, I., Rosová, A., Pachla, W., : Thermomechanical treatment, structure and transport currents in multicore Bi(2223)/Ag tapes Physica C 312 (1999) 179-190.
1. Fabbricattore, P.: Supercond. Sci Technol. 13 (2000) 1327.
2. Tjia, M. O.: Advances in Supercond. XII. Ed. T. Yamashita. Tokyo: Springer-Verlag Tokyo 2000. P. 679.
3. Kasztler, A.: Inst. Phys. Conf. Ser. No 167 (2000) 519.
4. Fabbricatore, P.: Physical Rev. B 61 (2000) 6413
5. Tjia MO.: Adv. Supercond. XII (2000) 679.
6. Sneary, A.B.: Supercond. Sci Technol. 14 (2001) 433.
7. Farinon, S.: IEEE Trans. on Applied Supercond. 11 (2001) 2776-2779.
* 8. Stavrev, S.: PhD Thesis. Lausanne: EPFL 2002.
9. Yakinci, Z.D.: Physica C 408-410 (2004) 900.
10. Seiler, E.: Supercond. Sci Technol. 17 (2004) 549.
11. Grivel, J.C.: Supercond. Sci Technol. 18 (2005) 583.
* 12. Seiler, E.: PhD Thesis. Bratislava: ElÚ SAV 2005.
13. Gomory F.: Supercond. Sci. Technol. 20 (2007) S271.
14. Li, M.Y.: Rare Metal Mater. Engn. 37 (2008) 288.
15. Farinon, S.: Supercond. Sci Technol. 23 (2010) 115004.
Pitel, J., Kováč, P., Hušek, I., : Upper limit of the critical currents and magnetic fields of cylindrical coils made of Bi(2223)/Ag tapes with reduced Ic-anisotropy Supercond. Sci Technol. 12 (1999) 62-68.
1. Evetts, J.E.: IoP Conf. Ser. 167 (2000) 1.
2. Evetts, J.E.: Supercond. Sci Technol. 13 (2000) 443.
3. Nakamura, T.: Supercond. Sci Technol. 13 (2000) 1521.
* 4. Lehtonen, J.: Doctor Thesis. Tampere University of Technology, (2000).
5. Usak, P.: Sixth Cryogenics 2000. P. 60.
6. Usak, P.: Supercond. Sci. Technol. 16 (2003) 459.
* 7. Xu, B.: PhD Thesis. Florida State Univ. College Engn. 2004.
8. Usak, P: J. Phys.: Conf. Series 43 (2006) 55.
9. Adanny, Y: J. Phys.: Conf. Series 43 (2006) 1068.
Prester, P., Kováč, P., Hušek, I., : Initial dissipation and a finite size effect in inhomogeneous superconductors: the case of BPSCCO/Ag tapes, Proc. SPIE 3481 (1998) 60-67.
1. Kuzmin, Y.I.: Phys. Rev. B 64 (2001) 094519.
2. Kuzmin, Y.I.: Technical Phys. Lett. 30 (2004) 457.
Kopera, Ľ., Kováč, P., Hušek, I., : New rolling technique for texturing of Bi(2223)/Ag tapes Supercond. Sci Technol. 11 (1998) 433.
1. Marti, F.: Supercond. Sci Technol. 11 (1998) 1251.
* 2. Marti, F.: Adv. Supercond. XI. Eds.: N.Kashizuka, S.Tajima. Tokyo, Springer Verlag 1999, p.939.
3. Marti, F.: IEEE Trans. Applied Supercond. 9 (1999) 2521.
4. Anderson, J.W.: Supercond. Sci Technol. 12 (1999) 617.
* 5. Kasztler, A.: PhD Thesis. Technical Univ. Wien (2000).
# 6. Dou, S.X.: Materials Forum 24 (2002) 183.
7. Feng, R.B.: Physica C 386 (2003) 182.
* 8. Dou, S.X.: In: Handbook of Supercond. Materials. Vol. I. Bristol: IoP 2003. P. 421.
9. Yuan, G.: Frontiers Supercond. Materials 3 (2004) 121.
* 10. Masti M.: PhD Thesis. Tampere Univ. Technol. (2006).
# 11. Parinov, I.A.: Microstructure and Properties of High-Temperature Superconductors. Springer: 2007. ISBN: 978-3-540-70976-3.
# 12. Parinov, I.A.: In: Microstructure and Properties of High-Temperature Superconductors. Berlin: Springer-Verlag 2012. 2nd ed. ISBN: 978-3-642-34440-4.
13. Togano, K.: Supercond. Sci Technol. 26 (2013) 115007.
14. Gao, Z.: Sci Reports 4 (2014) 4065.
15. Kumakura, H.: J. Japan Inst. Metals 78 (2014) 287.
16. Hosono, H.: Sci Technol. Adv. Mater. 16 (2015) 033503.
Kováč, P., Hušek, I., Kopera, Ľ., : Application oftwo-axial rolling for multicore Bi(2223)/Ag tapes Supercond. Sci Technol. 10 (1997) 982.
1. Glowacki, B.A.: Supercond. Sci Technol. 11 (1998) 989
2. Grasso, G.: Cryogenics 39 (1999) 267.
3. Grasso, G.: Trans. Applied Supercond. 9 (1999) 2589.
4. Evetts, J.E.: IoP Conf. Ser. 167 (2000) 1.
5. Takács, S.: IoP Conf. Ser. 167 (2000) 611.
6. Eriksen, M.: IoP Conf. Ser. 167 (2000) 615.
7. Bech, J.I.: IoP Conf. Ser. 167 (2000) 643.
8. Fabbricattore, P.: Supercond. Sci Technol. 13 (2000) 1327.
9. Fabbricattore, P.: Phys. Rev. B 61 (2000) 6413.
10. Vase, P.: Supercond. Sci Technol. 13 (2000) R71.
11. Evetts, J.C.: Supercond. Sci Technol. 13 (2000) 443.
12. Seifi, B.: CIRP Annals 2000: Manufacturing Techn. Cirp Bern: Hallwag Publ., 2000. P. 185.
* 13. Kasztler, A.: PhD Thesis. Technical Univ. Wien (2000).
14. Bech, J.I.: CIRP Ann-Manufct. Techn. 50 (2001) 201.
15. Farinon, S.: IEEE Trans. Applied Supercond. 11 (2001) 2776-2779.
16. Inada, R.: Physica C 392 (2003) 1091.
17. Oota, A.: IEEE Trans. Applied Supercond. 13 (2003) 3022.
18. Oota, A.: Physica C 386 (2003) 100.
* 19. Oota, A.: IoP Conf. Ser. No 181 (2004) 1898.
20. Oota, A.: Supercond. Sci Technol. 17 (2004) S440.
21. Bay, N.: J. Materials Processing Technol. 151 (2004) 18.
* 22. Seiler, E.: PhD Thesis. Bratislava: ElÚ SAV 2006.
* 23. Masti, M.: PhD Thesis. Tampere: Tampere Univ. Technol. 2006.
24. Inada, R.: Supercond. Sci Technol. 20 (2007) 138.
25. Inada, R.: Physica C 463 (2007) 846.
26. Farinon, S.: Supercond. Sci Technol. 23 (2010) 115004.
27. Stenvall, A.: Supercond. Sci Technol. 24 (2011) 085016.
28. Jiang, J.: IEEE Trans. on Applied Supercond. 23 (2013) 6400206.
29. Xiong, H.: Physica C 622 (2024) 1354520.
Kováč, P., Hušek, I., and Pachla, W.: Ceramic core dencity and homogenity in BSCCO/Ag tapes IEEE Trans. Applied Supercond. 7 (1997) 2098.
1. Jiang, J.: Supercond. Sci Technol. 11 (1998) 705.
2. Zeng, R.: Supercond. Sci Technol. 11 (1998) 299.
* 3. Eastell, Ch.J: PhD Thesis. Univ. Oxford (1998) 8-26.
4. Iyer, A.N.: Supercond. Sci Technol. 12 (1999) 436.
5. Iyer, A.N.: Supercond. Sci Technol. 13 (2000) 187.
6. Tundidor, J.: IoP Conf. Ser. 167 (2000) 543-546
7. Pandheeradi, M.: J. Manufact. Sci Engn.-Trans. ASME 123 (2001) 665.
8. Aloysius, R.P.: Physica C 384 (2003) 369.
# 9. Lei, L.: Chinese J. Mechanical Engn. 20 (2007) 75.
10. Yao, C.: Applied Physics Lett. 102 (2013) 082602.
11. Yao, C.: J. Applied Phys. 118 (2015) 203909.
12. Ma, X.: J. Phys.: Conf. Ser. 1054 (2018) 012041.
13. Liu, X.Q.: J. Alloys Comp. 922 (2022) 166304.
Kováč, P., Cesnak, L., Melišek, T., Hušek, I., Fröhlich, K., : Critical current to n-exponent relation in Bi(2223)/Ag tapes Supercond. Sci Technol. 10 (1997) 605.
1. Ramsbottom, H.D.: Applied Supercond. 5 (1997) 162.
2. Watanabe, K.: Supercond. Sci Technol. 11 (1998) 843
3. Marti, F.: Supercond. Sci Technol. 11 (1998) 485
4. Watanabe, K.: Supercond. Sci Technol. 11 (1998) 392
5. Prester, M.: Supercond. Sci Technol. 11 (1998) 333
* 6. Eastell, C.J: PhD Thesis. Univ. Oxford (1998) 8-26
7. Ciszek, M.: IEEE Trans. Applied Supercond. 9 (1999) 817.
8. Paasi, J.: IEEE Trans. on Applied Supercond. 9 (1999) 2215.
9. Marti, F.: IEEE Trans. Applied Supercond. 9 (1999) 2766.
10. Paasi, J.: IEEE Trans. Applied Supercond. 10 (2000) 1212.
* 11. Lehtonen, J.: Doctor Thesis. Tampere Univ. Technol. (2000).
12. Shaked, N.: Physica C 354 (2001) 237.
13. Lau, K.T.: Supercond. Sci Technol. 15 (2002) 351.
14. Spal, R.D.: Applied Phys. Lett. 80 (2002) 1412.
15. Richens, P.E.: IEEE Trans. Applied Supercond. 12 (2002) 1741.
16. Aloysius, R.P.: Physica C 384 (2003) 369.
17. Shin, HS.: Supercond. Sci Technol. 16 (2003) 1012.
18. Kim, K.T.: IEEE Trans. Applied Supercond. 13 (2003) 2996.
19. Yakinci, Z.D.: Physica C 408-410 (2004) 900.
20. Lau, K.T.: J. Materials Sci 16 (2005) 17.
21. Qu, T.M.: Physica C 426 (2005) 1159.
22. Lau, K.T.: J. Applied Phys. 99 (2006) Art. No. 123904.
23. Qu, T.M.: Physica C 444 (2006) 71.
24. Li, M.Y.: Rare Metal Mater. Engn. 37 (2008) 288.
25. Kang, M.: IEEE Trans. Applied Supercond. 19 (2009) 1257.
# 26. Ku, M.: J. Korea Inst. Applied Supercond. Cryogenics 12 (2010) 12.
27. Yoo, B.: IEEE Trans. Applied Supercond. 28 (2018) 8400806.
28. Ma, X.B.: J. Mater. Sci-Mater. Electron. 35 (2024) 1267.
Pachla, W., Marciniak, H., Szulc, A., Wroblevski, M., Kováč, P., Hušek, I., Melišek, T., : Investigation of texture formation and phase transition, CIP- and roll-sintered Ag-sheathed Bi(2223) tapes IEEE Trans. Applied Supercond. 7 (1997) 2090.
# 1. Parinov, I.A.: In: Microstructure and Properties of High-Temperature Superconductors. Berlin: Springer-Verlag 2007. ISBN 978-3-540-70976-3.
# 2. Parinov, I.A.: In: Microstructure and Properties of High-Temperature Superconductors. Berlin: Springer-Verlag 2012. 2nd ed. ISBN: 978-3-642-34440-4.
3. Yao, C.: Supercond. Sci Technol. 26 (2013) 075003.
4. Xie, P.: Mater. Express 4 (2014) 105.
5. Yao, C.: IEEE Trans. Applied Supercond. 25 (2015) 6937118.
Cesnak, L., Melišek, T., Kováč, P., Hušek, I., : Magnetic field hysteresis of critical currents in Bi(2223)/Ag tapes and the way to overcome it Cryogenic 37 (1997) 823.
1. Koblischka, M.R.: Phys. Rev. B 59 (1999) 12114.
2. Koblischka, M.R.: Supercond. Sci Technol. 12 (1999) 113.
3. Hua, L.: Supercond. Sci Technol. 12 (1999)153.
4. Zhu, Q.: Supercond. Sci Technol. 17 (2004) 756.
# 5. Wesche, R.: Physical Properties of High-Temperature Superconductors. Wiley & Sons, Ltd: 2015. ISBN: 978-9971-5-0683-4.
Kováč, P., Hušek, I., Kopera, Ľ., Pachla, W., : Optimalization of rolling process for multicore Bi(2223)/Ag tapes made by OPIT technique IoP Conf. Series No. 158 (1997) 1343.
1. Anderson, J.W.: Supercond. Sci Technol. 12 (1999) 617.
Kováč, P., Eastell, C., Pachla, W., Hušek, I., Marciniak, H., Grovenor, C., Goringe, M., : Structure and the current transport mechanism in Bi(2223)/Ag tape Physica C 292 (1997) 322.
1. Marti, F.: Supercond. Sci Technol. 11 (1998) 1251.
* 2. Marti, F.: Adv. Supercond. XI. Tokyo: Springer Verlag 1999. P. 939.
3. Marti, F.: IEEE Trans. on Applied Supercond. 9 (1999) 2521.
4. Prabhakaran, D.: Mater. Sci Engn. B 58 (1999) 199.
5. Polak, M.: Supercond. Sci Technol. 15 (2002) 1628.
6. Bruneel, E.: Supercond. Sci Technol. 17 (2004) 750.
7. Li, J.: Rare Metals 25 (2006) 400.
8. Li, J.: Rare Metal Mater. Engn. 35 (2006) 1896.
9. Li, M.Y.: Rare Metal Mater. Engn. 37 (2008) 288.
10. Oku, T.: Nanotechnol. Rev. 3 (2014) SI413.
# 11. Oku, T.: Perovskite Ceramics: Recent Advances and Emerging Applications. ISBN: 978-0-323-90586-2. Elsevier 2023, pp. 155-218.
Kováč, P., Cambel, V., Gregušová, D., Eliáš, P., Hušek, I., Kúdela, R., Hasenöhrl, S., Ďurica, M., : Testing of homogenity of Bi(2223)/Ag tapes by Hall probe array IoP Conf. Series No. 158 (1997) 1311.
1. Gomory, F.: Physica C 308 (1998) 203.
2. Schauer, W.: Proc. 9th CIMTEC. Florence 1998. P. 436
3. Herrmann, J.: IEEE Trans. Applied Supercond. 9 (1999) 1824.
4. Lehndorff, B.R.: Springer Trans. Modern Phys. 171 (2001) 1.
5. Bydžovský, J.: Sensors Actuators A 91 (2001) 21.
Kováč, P., Melišek, T., Hušek, I., : Transport Ic measurement technique with non-soldered contacts for Ag-sheated high Tc superconductors, Cryogenics 37 (1997) 177.
* 1. Kasztler, A.: PhD Thesis. Wien: TU 2000.
* 2. Richens, P.E.: PhD Thesis. Oxford: Univ. Oxford 2000.
3. Richens, P.E.: IEEE Trans. Applied Supercond. 12 (2002) 1741.
4. Wang YS.: Cryogenics 43 (2003) 71.
5. Qu, T.M.: Physica C 426 (2005) 1159.
6. Zhang, Z.C.: IEEE Trans. Applied Supercond. 20 (2010) 1585.
7. Pitel, J.: Supercond. Sci Technol. 26 (2013) 125002.
Kováč, P., Kopera, Ľ., Hušek, I., Cesnak, L., : Bending of Bi(2223)/Ag tapes at 77K and 300K Supercond. Sci Technol. 9 (1996) 792.
1. Almosani, M.K.: Physica C 289 (1997) 63.
2. Koblishka, M.R.: Supercond. Sci Technol. 10 (1997)693
3. Han, Z.: Supercond. Sci Technol. 10 (1997) 371.
4. Xiao, L.Y.: Cryogenics 37 (1997) 837.
5. Koblishka, M.R.: IoP Conf. Ser. 158 (1997) 1065
6. Horvat, J.: Physica C 297 (1998) 10.
* 7. Han, Z.: Proc. 15th Int. Conf. Magnet Technol. Beijing, Sci Press 1998. P. 956.
8. Sobha, : Supercond. Sci Technol. 13 (2000) 1487.
9. Passerini, R.: IoP Conf. Ser. 167 (2000) 607.
10. Hu, X.: Proc. SPIE 4537 (2002) 237.
11. Passerini, R.: Physica C 371 (2002) 173.
12. Katagiri, K.: Physica C 412-414 (2004) 1101.
13. Ha, H.S. : Physica C 412-414 (2004) 1096.
14. Koblischka, M.R.: European Phys. J. B 44 (2005) 277.
15. Katagiri, K.: Physica C 426 (2005) 1200.
16. Ahoranta, M.: Supercond. Sci Technol. 22 (2009) 015012.
17. Chen, Z.F.: ASEMD 2013. Beijing; China 2013, Art. no. 6780802, Pp 391.
Pachla, W., Kováč, P., Hušek, I., Kozlowski, R., Mazur, A., Marciniak, H., Wroblevski, M., : Effect of hydrostatic pressure on BSCCO compound for OPIT procedure Supercond. Sci Technol. 9 (1996) 957.
1. Navarro, R.: Supercond. Sci Technol. 11 (2000) R147-R170.
Kováč, P., Hušek, I., Pachla, W., Marciniak, H., Melišek, T., : Improvement in core density of BSCCO/Ag tapes by cold isostatic pressing Physica C 261 (1996) 131.
1. Zeng, R.: Supercond. Sci Technol. 10 (1997) 342.
2. Han, Z.: Supercond. Sci Technol. 10 (1997) 371.
3. Jiang, J.: Supercond. Sci Technol. 11 (1998) 705.
4. Watanabe, K.: Supercond. Sci Technol. 11 (1998) 392.
5. Zeng, R.: Advances Cryog. Engn. Mat. 44B (1998) 631.
6. Xie, P.: Mater. Express 4 (2014) 105.
Hušek, I., Kováč, P., and Kopera, Ľ.: Study of BSCCO-core density in multicore Ag sheathed tapes by microhardnees profiles, Supercond. Sci Technol. 9 (1996) 1066.
1. Zeng, R.: Supercond. Sci Technol. 10 (1997) 342.
2. Han, Z.: Supercond. Sci Technol. 10 (1997)371.
3. Oduleye, O.O.: Supercond. Sci Technol. 11 (1998) 858.
4. Zeng, R.: Supercond. Sci Technol. 11 (1998) 299.
5. Zeng, R.: Advances in Cryog. Engn. Mat. 44B (1998) 631.
6. Lanagan, M.T.: IEEE Trans. Applied Supercond. 9 (1999) 1900.
7. Oduleye, O.O.: IEEE Trans. Applied Supercond. 9 (1999) 2621.
8. Iyer, A.N.: Supercond. Sci Technol. 12 (1999) 436.
9. Tundidor, J.: IoP Conf. Ser. 167 (2000) 543.
10. Eriksen, M.: IoP Conf. Ser. 167 (2000) 615.
11. Bech, J.I.: IoP Conf. Ser. 167 (2000) 643.
12. Iyer, A.N.: Supercond. Sci Technol. 13 (2000) 187.
13. Seifi, B.: CIRP Annals 2000: Manufacturing Techn. Cirp Bern: Hallwag Publ., 2000. P. 185.
14. Navarro, R.: Supercond. Sci Technol. 11 (2000) R147-R170
15. Shao, H.M.: Rare Metal Materials & Engn. 32 (2003) 832.
16. Bay, N.: J. Mater. Processing Technol. 151 (2004) 18.
# 17. Parinov, I.A.: In: Microstructure and Properties of High-Temperature Superconductors. Berlin: Springer-Verlag 2007. ISBN 978-3-540-70976-3. 583 s.
# 18. Parinov, I.A.: In: Microstructure and Properties of High-Temperature Superconductors. Berlin: Springer-Verlag 2012. 2nd ed. ISBN: 978-3-642-34440-4 779 s.
19. Yao, C.: J. Applied Phys. 118 (2015) 203909.
20. Ma, X.: J. Phys.: Conf. Ser. 1054 (2018) 012041.
21. Liu, X.Q.: J. Alloys Comp. 922 (2022) 166304.
22. Yao, C.: J. Mater. Chem. C 11 (2023) 1470.
Kováč, P., Melišek, T., Hušek, I., : Transport Ic measurements technique with not soldere contacts for Ag-sheathed high-Tc superconductors Cryogenics 36 (1996) 1053.
* 1. Kasztler, A.: PhD Thesis. Technical Univ. Wien (2000).
Kováč, P., Hušek, I., and Pachla, W.: Ceramic core density and transport current density of Bi(2223)Ag superconductors IoP Conf. Ser. No. 148 (1995) 367.
1. Wolf, B.: Supercond. Sci Technol. 9 (1996) 589.
2. Zeng, R.: Supercond. Sci Technol. 10 (1997) 342.
3. Zeng, R.: Adv. Cryog. Engn. Mat. 44B (1998) 631.
4. Navarro, R.: Supercond. Sci Technol. 11 (2000) R147-R170.
Hušek, I., Kováč, P., and Pachla, W.: Microhardness profiles in BSCCO/Ag composites made by various technological steps Supercond. Sci Technol. 8 (1995) 617.
1. Wolf, B.: Supercond. Sci. Technol. 9 (1996) 589.
2. Parrell, J.A.: Supercond. Sci. Technol. 9 (1996) 393.
3. Mamalis, A.G.: Applied Supercond. 4 (1996) 213.
4. Fisher, S.J.: Cryogenics 37 (1997) 593.
5. Zeng, R.: Supercond. Sci. Technol. 10 (1997) 342.
6. Han, Z.: Supercond. Sci. Technol. 10 (1997)371.
7. Martini, L.: IoP Conf. Ser. 158 (1997) 1335
8. Dao, M.: Philos. Magazine A 78 (1998) 857.
9. Zeng, R.: Supercond. Sci. Technol. 11 (1998) 299.
10. Martini, L.: Supercond. Sci. Technol. 11 (1998) 231.
11. Lee, H.G.: Supercond. Sci. Technol. 11 (1998) 122.
12. Zeng, R.: Adv. Cryog. Engn. Mat. 44B (1998) 631.
* 13. Eastell, Ch.J: PhD Thesis. Univ. Oxford 1998.
14. Malberg, M.: IEEE Trans. Applied Supercond. 9 (1999) 2577.
15. Iyer, A.N.: Supercond. Sci. Technol. 12 (1999) 436.
16. Freltoft T.: NATO Adv. Sci Inst. Series E 365 (1999) 523.
17. Iyer, A.N.: Supercond. Sci. Technol. 13 (2000) 187.
18. Thagara, J.: Supercond. Sci. Technol. 13 (2000) 1035.
19. Navarro, R..: Supercond. Sci. Technol. 11 (2000) R147-R170
* 20. Trautner, A.: PhD Thesis.
21. Ha, H.S.: IEEE Trans. Applied Supercond. 11 (2001) 3748.
22. Hassan, M.K.: Physica C 372 (2002) 1036.
23. Beilin, V.: Physica C 377 (2002) 15.
24. Shao, H.M.: Rare Metal Mater. Engn. 32 (2003) 832.
25. Beilin, V.: Physica C 405 (2004) 70.
26. Lubenets, S.V.: Low Temperat. Phys. 30 (2004) 345.
# 27. Parinov, I.A.: In: Microstructure and Properties of High-Temperature Superconductors. Berlin: Springer-Verlag 2007. ISBN 978-3-540-70976-3. 583 s.
# 28. Parinov, I.A.: In: Microstructure and Properties of High-Temperature Superconductors. Berlin: Springer-Verlag 2012. 2nd ed. ISBN: 978-3-642-34440-4 779 s.
29. Li, H .: J. Alloys Compounds 691 (2017) 482.
30. Ma, X.: J. Supercond. Novel Magnetism 31 (2018) 3105.
31. Ma, X.: J. Phys.: Conf. Ser. 1054 (2018) 012041.
32. Xiao, Y.: J. Supercond. Novel Magnetism 35 (2022) 697.
33. Liu, X.Q.: J. Alloys Comp. 922 (2022) 166304.
34. Han, M.: Supercond. Sci Technol. 35 (2022) 055006.
35. Guo, W.W.: Sci China-Mater. 67 (2024) 301.
Pachla, W., Kováč, P., Marciniak, H., Gömöry, F., Hušek, I., Pochaba, I., : Structural and electrical properties of Bi(Pb)-Sr-Ca-Cu-O obtained by hot pressing Physica C 248 (1995) 29.
1. Wolf, B.: Supercond. Sci Technol. 9 (1996) 589.
2. Rouessac, V.: Physica C 268 (1996) 225.
3. Prabhakaran, D.: Supercond. Sci Technol. 11 (1998) 788
4. Tampieri, A.: J. Mater. Sci 34 (1999) 6177.
5. Caillard, R.: Physica C 340 (2000) 101.
6. Caillard, R.: Supercond. Sci Technol. 14 (2001) 712.
7. Fu, X.K.: Supercond. Sci Technol. 16 (2003) 804.
8. Aloysius, R.P.: Mater. Lett. 58 (2004) 2969.
9. Kumar, R.R.: Supercond. Sci Technol. 18 (2005) 689.
# 10. Parinov, I.A.: In: Microstructure and Properties of High-Temperature Superconductors. Berlin: Springer-Verlag 2007. ISBN 978-3-540-70976-3. 583 s.
# 11. Parinov, I.A.: In: Microstructure and Properties of High-Temperature Superconductors. Berlin: Springer-Verlag 2012. 2nd ed. ISBN: 978-3-642-34440-4 779 s.
Kováč, P., Hušek, I., Pachla, W., Melišek, T., Kliment, V., : The effect of fabrication pressure on critical transport current density in press-sinter processing of Bi(2223)Ag tapes Supercond. Sci Technol. 8 (1995) 341-346.
1. Wolf, B.: Supercond. Sci. Technol. 9 (1996) 589.
2. Parrell, J.A.: Supercond. Sci and Techn. 9 (1996) 393.
3. Parrell, J.A.: J. Mater. Research 12 (1997) 2997.
4. Han, Z.: Superconduct. Sci. Technol. 10 (1997)371
5. Ma, Y.W.: J. Mater. Sci Technol. 14 (1998) 374.
6. Jiang, J.: Supercond. Sci. Technol. 11 (1998) 705.
* 7. Ma, Y.: Proc. 15th Int. Conf. on Magnet Technology – MT-15. Beijing, Sci Press 1998. P. 1083.
* 8. Eastell, Ch.J: PhD Thesis. Univ. Oxford 1998.
9. Aloysius, R.P.: Physica C 309 (1998) 203
10. Strano, G.: Supercond. Sci. Technol. 13 (2000)1470.
11. Strano, G.: Inter. J. Modern Phys. 14 (2000) 2896.
12. Yuan, Y.: IEEE Trans. Applied Supercond. 13 (2003) 2921.
13. Lubenets, S.V.: Low Temperat. Phys. 30 (2004) 345.
14. Kuzmin, Y.I.: Techn. Phys. Lett. 30 (2004) 457.
Kováč, P., Hušek, I., and Cesnak, L.: Critical current recovery in Ag-sheathed Bi(2223) tapes after bending and streightening Supercond. Sci Technol. 7 (1994) 583.
1. Polak, M.: Applied Phys. Lett. 70 (1997) 1034.
2. Koblishka, M.R.: Supercond. Sci Technol. 10 (1997)693
3. Sobha, A.: Supercond. Sci Technol. 13 (2000) 1487.
4. Aloysius, RP.: Supercond. Sci Technol. 14 (2001) 85.
5. Hu, L.F.: Acta Phys. Sinica 51 (2002) 1826.
6. Passerini, R.: Physica C 371 (2002) 173.
7. Shin, H.S.: Supercond. Sci Technol. 16 (2003) 1012.
8. Li, Ch.: Rare Metal Mater. Engn. 35 (2006) 1691.
9. Lu, Z.Y.: Materials Sci Forum 546-549 (2007) 1975.
# 10. Parinov, I.A.: In: Microstructure and Properties of High-Temperature Superconductors. Berlin: Springer-Verlag 2007. ISBN 978-3-540-70976-3.
# 11. Parinov, I.A.: In: Microstructure and Properties of High-Temperature Superconductors. Berlin: Springer-Verlag 2012. 2nd ed. ISBN: 978-3-642-34440-4.
12. Gao, P.: Supercond. Sci Technol. 32 (2019) 034003.
Pachla, W., Marciniak, H., Kováč, P., Hušek, I., : Hot pressing of Bi(Pb)-Sr-Ca-Cu-O superconducting pellets Supercond. Sci Technol. 7 (1994) 820.
1. Perin, A.: IoP Conf. Ser. 148 (1995) 391.
2. Liu, H.K.: Physica C 259 (1996) 187.
3. Ma, Y.W.: Supercond. Sci Technol. 7 (1996) 796.
4. Noudem, J.G.: Physica C 281 (1997) 339.
5. Ma, Y.W.: Supercond. Sci Technol. 10 (1997) 778.
6. Horvat, J.: Physica C 281 (1997)183
# 7. Dou, S.X.: Annual Reports Progress Chem. – Sec. C 93 (1997) 363.
8. Dou, S.X.: Supercond. Sci Technol. 10 (1997) A52.
9. Ma, Y.W.: Trans. Nonferrous Metals Soc China 8 (1998) 88
# 10. Ma, Y.W.: Chinese J. Mechanical Engn. 34 (1998) 51.
11. Ma, Y.W.: J. Mater. Sci Lett. 17 (1998) 415
12. Dou, S.X.: Supercond. Sci Technol. 11 (1998) 781
13. Rouessac, V.: Supercond. Sci Technol. 11 (1998)1160
14. Zhu, Y.Y.: Supercond. Sci Technol. 12 (1999) 640.
15. Garnier, V.: Supercond. Sci Technol. 14 (2001) 717.
* 16. Zhu, Y.T.: US Patent 6,195,870, 2001.
17. Garnier, V.: Physica C 372 (2002) 1107.
18. Fu, X.K.: Supercond. Sci Technol. 16 (2003) 804.
19. Ignatov, H.: J. Supercond. Novel Magnetism 21 (2008) 69.