1. Bassaid, S.: Molecular Phys. 119 (2021) e1802073. 2. Prischepa, S.: Supercond. Sci Technol. 34 (2021) 115021.
Nurgaliev, T., Štrbík, V., Gál, N., Chromik, Š., and Sojková, M.: Electrical transport effects in YBCO/LSMO bilayer junctions, Physica B 550 (2018) 324-331.1. Bahboh, A.: Ceramics Inter. 45 (2019) 13732. 2. Bghour, M.: Europ. Phys. J.-Applied Phys. 93 (2021) 10601.
Chromik, Š., Camerlingo, C., Sojková, M., Štrbik, V., Talacko, M., Malka, I., Bar, I., Bareli, G., and Jung, G.: Low energy electron beam processing of YBCO thin films, Applied Surface Sci 395 (2017) 42-49.1. Wang, S.-S.: Chinese Phys. B 28 (2019) 027401. 2. Li, F.: Physica Scripta 94 (2019) 105820. 3. Juarez-Lopez, J.M.: Mater. Res. Express 7 (2020) 096001.
Štrbík, V., Beňačka, Š., Gaži, Š., Španková, M., Šmatko, V., Knoška, J., Gál, N., Chromik, Š., Sojková, M., and Pisarčík, M.: Superconductor-ferromagnet-superconductor nanojunctions from perovskite materials, Applied Surface Sci 395 (2017) 237-240.1. Ma, L.: Sensors Actuators B 255 (2018) 2546. 2. Liu, X.: J. Alloys Compounds 772 (2019) 263.
Sojková, M., Štrbik, V., Nurgaliev, T., Chromik, Š., Dobročka, E., Španková, M., Nurgaliev, T., Blagoev, B., and Gál, N.: Fabrication of hybrid thin film structures from HTS and CMR materials, J. Phys.:Conf. Ser. 700 (2016) 012022.# 1. Xie, Q.: Cailiao Daobao/Mater. Rep. 32 (2018) 30-33 and 49.
Nurgaliev, T., Blagoev, B., Štrbik, V., Chromik, Š., and Sojková, M.: Investigation of the resistive properties of HTS/manganite bilayers, J. Phys.:Conf. Ser. 700 (2016) 012020.1. Marinov, G.: Optical Mater. 89 (2019) 390.
Španková, M., Štrbik, V., Dobročka, E., Chromik, Š., Sojková, M., Zheng, D., Li, J., : Characterization of epitaxial LSMO thin films with high Curie temperature prepared on different substrates. Vacuum 126 (2016) 24-28.1. Yang, C.H.: J. Mater. Sci-Mater. Electron. 28 (2017) 3423. 2. Shiota, T.: Thin Solid Films 626 (2017) 154. 3. Zhang, H.: Applied Phys. Lett. 111 (2017) 192408. 4. Zhou, H.: Mater. Research Express 5 (2018) 015001. 5. Sukkurji, P.A.: Materials 11 (2018) 1204. 6. Kumari, S.: Sci Rep. 10 (2020) 3659. 7. Channagoudra, G.: Thin Solid Films 709 (2020) 138132. 8. Balakrishnan, P.: AIP Adv. 11 (2021) 025105. 9. Greculeasa, S.G.: Nanomater. 11 (2021) 3389. 10. Pawlak, J.: Adv. Electron. Mater. 8 (2022) 2100574.
1. Wang, H.: Thin Solid Films 599 (2016) 27. 2. Wang, H.: Thin Solid Films 621 (2017) 1. 3. Zhou, H.: Mater. Research Express 5 (2018) 015001. 4. Xia, W.: Nanoscale Res. Lett. 15 (2020) 9. 5. Yan, F.: Thin Solid Films 698 (2020) 137872. 6. Prajapat, C.L.: ACS Applied Electron. Mater. 2 (2020) 2636.
Blagoev, B., Nurgaliev, T., Bineva, I., Vasileva, E.D., Štrbik, V., and Mateev, E.S.: Resistive characteristics of LSMO/LCMO bi-layers and temperature switching effect of magnetoresistance, Modern Phys. Lett. B 28 (2014) 1450096.1. Chen, Y.: RSC Adv. 11 (2021) 13175.
1. Xiao, L.: Mater. Lett. 199 (2017) 184. 2. Uspenskaya, L.S.: J. Surface Invest. 15 (2021) 1159.
1. Dutta, P.: J. Alloys Compounds 653 (2015) 585. 2. Shiota, T.: Thin Solid Films 593 (2015) 1. # 3. Zhang, S.: Applied Surface Sci 335 (2015) 115. 4. Yan, F.: Mater. Character. 124 (2017) 90. 5. Arango, I. C.: J. Phys. Conf. Ser. 935 (2017) UNSP012028. # 6. Zhang, X.: Hsueh Pao/J. Chinese Ceramic Soc 45 (2017) 1303. 7. Zhang, F.: Nanoscale Research Lett. 13 (2018) 24. 8. Rasic, D.: ACS Applied Mater. Interfaces 10 (2018) 21001. 9. Mandal, S.: J. Magnet. Magnet. Mater. 527 (2021) 167771. 10. Mandal, S.: Crystals 11 (2021) 1493.
# 1. Timerfayaz, N.: Solid State Phenomena 233-234 (2015) 662. 2. Zhou, H.: IEEE IS3C 2016. P. 546. 3. Almessiere, M.A.: Sci Sintering 50 (2018) 63.
1. Zhao, S.: Adv. Applied Ceram. 116 (2017) 180. 2. Jiang, J.: Ceramics Inter. 44 (2018) 3915. 3. Galik, G.: AIP Conf. Proc. 1996 (2018) 020011. 4. Ji, F.: Mater. Res. Express 6 (2019) 086326. 5. Dong, G.: Ceramics Inter. 45 (2019) 12162. 6. Shi, Q.: Adv. Electron. Mater. 5 (2019) 1900020. 7. Liu, S.: J. Micromech. Microengn. 29 (2019) 065008. 8. Yu, X.: J. Sol-Gel Sci. Technol. 90 (2019) 221. 9. Liu, Y.: Ceramics Inter. A 45 (2019) 24070. 10. Li, H.: J. Alloys Comp. 810 (2019) UNSP 151908. 11. Pu, X.: J. Material. Sci-Mater. Electr. 30 (2019) 19862. 12. Li, H.: J. Alloys Comp. 847 (2020) 156417. 13. Chu, K.: J. Material. Sci-Mater. Electr. 31 (2020) 12389. 14. Chu, K.: Ceramics Inter. 46 (2020) 7568. 15. Liu, Y.: Ceramics Inter. 47 (2021) 7674. 16. Guan, X.L.: Ceramics Inter. 47 (2021) 18931. 17. Guan, X.: J. Alloys Comp. 876 (2021) 160173. 18. Yang, S.: Ceramics Inter. 47 (2021) 29631. 19. Yu, Z.: Ceramics Inter. 47 (2021) 33202. 20. Yu, X.: Applied Surface Sci 570 (2021) 151221. 21. Guan, X.: J. Alloys Comp. 895 (2022) 162555. 22. Chaluvadi, S.K.: Applied Surface Sci 579 (2022) 152095.
- Pei, H.: ACS Applied Mater. Interfaces 10 (2018) 30895.
1. Cheng, F.: J. Mater. Chem. C 5 (2017) 663. 2. Aji, L. B. B.: J. Applied Phys. 125 (2019) 075306.
1. Zhu, H.: Modern Phys. Lett. 27 (2013) 1350128. 2. Barrionuevo, D.: J. Applied Phys. 114 (2013) 234103. 3. Arango, I. C.: J. Phys. Conf. Ser. 935 (2017) UNSP012028. 4. Boricha, H.: Bull. Mater. Sci 43 (2020) 252.
1. Cui, A.: Sci Rep 3 (2013) 2429. 2. Popovic, Z.: J. Phys. Soc Japan 82 (2013) 114714.
* 1. Kováč, J.: In MgB2 superconducting wires. Ed. R. Flückiger. New Jersey: World Sci Publ. 2016. ISBN 978-981-4725-58-3. P. 419. # 2. Wang, D.: Xiyou Jinshu/Chin. J. Rare Metals 41 (2017) 445. 3. Luo, W.: Supercond. Sci Technol. 32 (2019) 085006.
1. Chattopadhyay, S.: J. Applied Phys. 113 (2013) 194501. 2. Huang, J.: Ceramics Inter. 42 (2016) 12202. 3. Wang, F.: J. Mater. Sci-Mater. in Electron. 27 (2016) 7084.
# 1. Chen, Z.: He Jishu/Nuclear Techniques 34 (2011) 183. 2. Xue, Y.: Applied Mechanics Material. 117-119 (2012) 811. 3. Panna, D.: Sci Rep. 8 (2018) 5597. 4. Balasubramanian, K.: Adv. Function. Mater. 30 (2020) SI1807379.
1. Altin, S.: J. Phys. Chem. Solids 72 (2011) 1070. 2. Sun, Y.: J. Supercond. Novel Magnetism 25 (2012) 1735. 3. Song, K.J.: IEEE Trans. Applied Supercond. 23 (2013) 7100304. 4. Sun, Y.: Scripta Materialia 70 (2014) 55. 5. Owolabi, T.O.: J. Supercond. Novel Magnetism 28 (2015) 75. 6. Owolabi, T.O.: Applied Comput. Intelligence Soft Computing (2016) 1709827. 7. Grivel, J.-C.: Physica C 528 (2016) 65. 8. Sandu, V.: Supercond. Sci Technol. 29 (2016) 065012. 9. Burdusel, M.: Univ. Politeh. Bucharest Sci Bull. Ser. C 79 (2017) 155. 10. Qaid, S.A.S.: J. Mater. Sci-Mater. Electron. 28(2017) 14696. 11. Zhang, Y.: Physica C 573 (2020) 1353633. 12. Capra, M.: Mater. Today Comm. 26 (2021) 101731. 13. Olatunji, S.O.: Comput. Mater. Sci 192 (2021) 110392.
Laurenčíková, A., Sojková, M., Chromik, Š., Štrbik, V., and Kostič, I.: Tl-based patterned superconducting structures: fabrication and study. Supercond. Sci Technol. 23 (2010) 045007.1. Narasimhachar, V.: Nature Comm. 6 (2015) 7689. # 2. Chen, M.: Key Engn. Mater. 773 (2018) 162.
1. Mateev, E.: J. Phys.: Conf. Ser. 356 (2012) 012022. 2. Mateev, E.: Acta Phys. Polonica A 126 (2014) 787.
1. Joseph, D.P.: AIP Conf. Proc. 1665 (2015) 130001. 2. Wang, F.: J. Mater. Sci: Mater. in Electr.27 (2016) 7084. 3. Wang, F.: J. Mater. Sci: Mater. in Electr.30 (2019) 4137.
1. Markovskiy, N. D.: Phys. Rev. B 83 (2011) 174301. 2. Ponosov, Y.S.: Phys. Rev. B 96 (2017) 214503.
1. Sahu, D.R.: J. Alloys Compounds 503 (2010) 163. 2. Cesaria, M.: J. Physics Conf. Series 292 (2011) 012003. 3. Sahu, D.R.: J. Phys. Chem. Solids 73 (2012) 622. 4. Paul, N.: IEEE EDKCON 2018, p. 55.
1. Gao, P.-J.: Acta Phys. Sinica 59 (2010) 583. # 2. Feys, J.: Mater. Research Soc Symp. Proc. 1547 (2013) 3. 3. Nast, R.: J. Phys.: Conf. Series 507 ( 2014) 022023. 4. Demencik, E.: IEEE Trans. Applied Supercond. 24 (2014) no. 6. 5. Grilli, F.: Supercond. Sci Technol. 29 (2016) 083002. 6. Prestigiacomo, J.C.: IEEE Trans. Applied Supercond. 27 (2017) 6603905. 7. Amemiya, N.: Supercond. Sci Technol. 32 (2019) 115008. 8. Li, Y.: IEEE Trans. Applied Supercond. 30 (2020) Iss. 4. 9. Wulff, A.C.: Supercond. Sci Technol. 34 (2021) 053003. 10. Li, W.R.: IEEE Trans. Applied Supercond. 31 (2021) 4802009. 11. Hao, L.N.: IEEE Trans. Applied Supercond. 32 (2022) 5900505.
1. Choi, C.: Applied Phys. Lett. 98 (2011) 083506. 2. Choi, C.: Applied Phys. Lett. 98 (2011) 123506. 3. Benkovska, J.: Phys. Status Solidi A 209 (2012) 1384. 4. Kaczmarski, J.: J. Display Technol. 11 (2015) 528. 5. Popovici, M.: Chem. Mater. 29 (2017) 4654. # 6. Jung, W.: New Phys.: Sae Mulli 67 (2017) 696.
1. Chen, Y.F.: Supercond. Sci Technol. 21 (2008) 085005.
1. Uspenskaya, L.S.: J. Surface Invest. 15 (2021) 1159.
Sojková, M., Chromik, Š., Odier, P., Štrbik, V., : Role of the mercury pressure during reaction synthesis of Hg(Re)-based superconducting films European J. Phys. 5 (2007) 446-456.# 1. Wu, J.: In High Temperature Superconductors. Weinheim: Wiley 2010 ISBN: 978-3-527-40827-6. P. 153.
# 1. Wesche, R.: Physical Properties of High-Temperature Superconductors. Wiley & Sons, Ltd: 2015. ISBN: 978-9971-5-0683-4.
1. Kalubarme, R.S.: J. Alloys Compounds 479 (2009) 732. 2. Kalubarme, R.S.: J. Supercond. Novel Magnetism 23 (2010) 1313.
# 1. Wu, J.: In High Temperature Superconductors. Weinheim: Wiley 2010 ISBN: 978-3-527-40827-6. P. 153. 2. Ghamsari, B.: IEEE Trans. Applied Supercond. 21 (2011) 3646.
* 1. Ramalhosa, E.C.D.: In Focus on Water Resource Research. Nova Sci Publ. 2008. ISBN: 978-1-60456-093-0. P. 41-86.
1. Liang, G.: Supercond. Sci Technol. 19 (2006) 1146. 2. Kumar, R.G.A.: Supercond. Sci Technol. 20 (2007) 222. 3. Eisterer, M.: Supercond. Sci Technol. 20 (2007) R47. 4. Yamamoto, A.: Physica C 463 (2007) 807. 5. Shcherbakov, A.V.: IEEE Trans. Applied Supercond. 17 (2007) 2806. 6. Liang, G.: Physica C 457 (2007) 47. 7. Ye, L.: Supercond. Sci Technol. 20 (2007) 621. 8. Grivel, J.C.: Supercond. Sci Technol. 21 (2008) art. no. 035006. * 9. van Weeren, H.: PhD Thesis. Enschede: 2007. 10. Feng, W.J.: Physica C 470 (2010) 236. 11. Zhang, X.P.: Physica C 470 (2010) 104. 12. Jung, A.: Supercond. Sci Technol. 23 (2010) 095006. 13. Jarvela, J.: Cryogenics 51 (2011) 400. 14. Fujii, H.: IEEE Trans. Applied Supercond. 21 (2011) 2664. 15. Ma, Z.Q.: Inter. Mater. Rev. 56 (2011) 267. 16. Abdyukhanov, I.: IEEE Trans. Applied Supercond. 28 (2018) 6200504. 17. Avronsart, J.: IEEE Trans. Applied Supercond. 28 (2018) 6200305. 18. Fareed, M.U.: IEEE Trans. Applied Supercond. 29 (2019) 5900705. 19. Madhar, N.A.: Metals 9 (2019) 1190. 20. Yetis, H.: Physica B 593 (2020) 412277. 21. Karaboga, F.: J. Mater. Sci-Mater. Electron. 31 (2020) 7141. 22. Fareed, M.U.: Materials 14 (2021) 6204.
1. Mathur, S.: Zeit. Anorganische und Allgemeine Chemie 633 (2007) 2459. 2. Shimakage, H.: IEEE Trans. Applied Supercond. 17 (2007) 202. 3. Lee, T.G.: Physica C 468 (2008) 1888. 4. Jung, S.G.: Supercond. Sci. Technol. 22 (2009) 075010. 5. Sandu, V.: J. Supercond. Novel Magnet. 26 (2013) 361. 6. Orgiani, P.: J. Mater. Sci 49 (2014) 4108. 7. Gregor, M.: Applied Surface Sci 312 (2014) 97. 8. Putri, W.B.K.: Thin Solid Films 590 (2015) 80. # 9. Ranot, M.: Progress in Supercond. Cryog. 17 (2015) 1. 10. Baker, A.A.: Supercond. Sci Technol. 31 (2018) 055006. 11. Gregor, M.: Applied Surface Sci 461 (2018) SI124. 12. Beckham, J. L.: J. Phys. D 53 (2020) 205302. 13. Aji, L.B.B.: Thin Solid Films 710 (2020) 138260.
1. Zhang, X.P.: Supercond. Sci Technol. 19 (2006) 699. 2. Zhang, X.P.: Supercond. Sci Technol. 19 (2006) 479. 3. Xu, H.L.: Supercond. Sci Technol. 19 (2006) 1169. # 4. Giunchi, G.: Mater. Res. Soc. Symp. Proc. 946 (2006) 9. 5. Demencik, E.: J. Phys.: Conf. Series 43 (2006) 83. 6. Dou, S.X.: Phys. Rev. Lett. 98 (2007) 097002. 7. Liang, G.: Supercond. Sci Technol. 20 (2007) 697. 8. Eisterer, M.: Supercond. Sci Technol. 20 (2007) R47. 9. Shekhar, C.: J. Applied Phys. 102 (2007) 093910. 10. Susner, M.A.: Physica C 456 (2007) 180. 11. Zhang, F.F.: Arch. Pathol. & Lab. Medicine 131 (2007) 773. * 12. Birajdar, B.: PhD Thesis. Universität Tübingen 2007. 13. Zhang, X.P.: Magnesium – Aluminium Mater. – Aerospace Mater. – Supercond.Functional Mater. 546-549 (2007) 2041. 14. Birajdar, B.: J. Phys.: Conf. Series 97 (2008) 012246. 15. Birajdar, B.: Supercond. Sci Technol. 21 (2008) 073001. 16. Yamamoto, A.: Adv. in Condensed Matter Mater. Research. Nova Publ. 2010. ISBN: 978-1-60741-959-4. P. 83-115. 17. Maeda, M.: Scripta Materialia 64 (2011) 1059. 18. Adelmann, B.: Applied Phys. A 122 (2016) 642. * 19. Haessler, W.: In MgB2 superconducting wires. Ed. R. Flückiger. New Jersey: World Sci Publ. 2016. ISBN 978-981-4725-58-3. P. 271. 20. Adelmann, B.: Applied Phys. A 123 (2017) 454. # 21. Wang, D.: Xiyou Jinshu/Chin. J. Rare Metals 41 (2017) 445.
1. Xie, Q.: New Adv. Mater. 197-198 (2011) 466. 2. Xie, Q.-L.: Acta Phys. Sinica 67 (2018) 137401.
1. Yeoh, W.K.: Applied Phys. Lett. 90 (2007) 122502. 2. Eisterer, M.: Supercond. Sci Technol. 20 (2007) R47. 3. Grivel, J.C.: Supercond. Sci Technol. 21 (2008) 035006. * 4. van Weeren, H.: PhD Thesis. Enschede: 2007. 5. Ye, S.J.: Supercond. Sci Technol. 27 (2014) 055017. * 6. Kumakura, H.: In MgB2 superconducting wires. Ed. R. Flückiger. New Jersey: World Sci Publ. 2016. ISBN 978-981-4725-58-3. P. 315.
1. Zdunek, J.: Solid State Phenomena 114 (2006) 171. 2. Vinod, K.: Supercond. Sci Technol. 20 (2007) R1. 3. Haessler, W.: IEEE Trans. Applied Supercond. 17 (2007) 2919. * 4. van Weeren, H.: PhD Thesis. Enschede: 2007. * 5. Birajdar, B.: PhD Thesis. Universität Tübingen 2007. 6. Fujii, H.: Supercond. Sci Technol. 21 (2008) art. no. 015002. 7. Birajdar, B.: Supercond. Sci Technol. 21 (2008) 073001. 8. Birajdar, B.: J. Phys.: Conf. Series 97 (2008) 012246. 9. Birajdar, B.: J. Phys.: Conf. Series 97 (2008) 012217. 10. Birajdar, B.: J. Applied Phys. 105 (2009) 033903. 11. Bhadauria, P.P.S.: J. Applied Phys. 113 (2013) 063908. 12. Fujii, H.: Supercond. Sci Technol. 27 (2014) 035002. * 13. Birajdar, B.: In MgB2 superconducting wires. Ed. R. Flückiger. New Jersey: World Sci Publ. 2016. ISBN 978-981-4725-58-3. P. 111. * 14. Hossain, S.M.A.: In MgB2 superconducting wires. Ed. R. Flückiger. New Jersey: World Sci Publ. 2016. ISBN 978-981-4725-58-3. P. 289. # 15. Bhadauria, P.P.S.: In Comprehensive Energy Systems. Elsevier 2018. ISBN: 978-012809597-3, pp. 303-328. 16. Zhang, D.: Supercond. Sci Technol. 32 (2019) 125003.
# 1. Wu, J.: In High Temp. Superconductors. Weinheim: Wiley 2010. ISBN: 978-3-527-40827-6. P. 153. 2. Zhang, H.: J. Phys. D 53 (2020) 013001.
1. Zhu, H.M.: Physica C 452 (2007) 11. 2. Mazzetti, P.: Phys. Rev. B 77 (2008) 064516.
1. Holcomb, M.J.: Physica C 423 (2005) 103. 2. Jiang, C.H.: Physica C 423 (2005) 45. 3. Perner, O.: IEEE Trans. Applied Supercond. 15 (2005) 3192. 4. Perner, O.: Physica C 432 (2005) 15. * 5. Goldacker, W.: Fronties in Supercond. Matreials. Ed. A.V. Narlikar. Berlin: Springer 2005. 6. Li, F.: Supercond. Sci Technol. 19 (2006) 1073. 7. Chen, S.K.: Applied Phys. Lett. 88 (2006) 192512. 8. Vinod, K.: Supercond. Sci Technol. 20 (2007) R1. 9. Eisterer, M.: Supercond. Sci Technol. 20 (2007) R47. 10. Liang, G.: Physica C 457 (2007) 47. 11. Kumar, R.G.A.: Applied Phys. A 88 (2007) 243. 12. Vinod, K.: Supercond. Sci Technol. 21 (2008) art. no. 025003. 13. Chen, S.K.: Sains Malaysiana 37 (2008) 223. 14. Vignolo, M.: IEEE Trans. Applied Supercond. 18 (2008) 1175. 15. Zhang, X.P.: J. Phys.: Conf. Series 97 (2008). 16. Dancer, C.E.J.: J. European Ceramic Soc. 29 (2009) 1817. 17. Vignolo, M.: IEEE Trans. Applied Supercond. 19 (2009) 2718. 18. Hwang, S.M.: IEEE Trans. Applied Supercond. 19 (2009) 2710. 19. Hwang, S.M.: Physica C 469 (2009) 1523. 20. Ma, Z.Q.: Supercond. Sci Technol. 22 (2009) 125006. 21. Singh, K.: Phys. Status Solidi A 207 (2010) 1456. 22. Dancer, C.E.J.: Supercond. Sci Technol. 23 (2010) 065015. 23. Ojha, N.: Phys. Status Solidi A 207 (2010) 175. 24. Mamalis, A.G.: Supercond. Sci Technol. 23 (2010) 095011. 25. Wang, D.: Supercond. Sci Technol. 24 (2011) 075002. 26. Burdusel, M.: J. Materials Sci 47 (2012) 3828. 27. Tanaka, H.: Supercond. Sci Technol. 25 (2012) 115022. 28. Song, X.: Ceramics Inter. 39 (2013) 4299. 29. Shang, R.: Inter. J. Applied Ceramic Technol. 10 (2013) 849. 30. Kulich, M.: Supercond. Sci Technol. 26 (2013) 105019. 31. Akamaru, S.: Mater. Trans. 54 (2013) 2258. 32. Agil, H.: J.Supercond. Novel Magnet. 26 (2013) SI 1525. 33. Jang, J.-J.: Phys. Procedia 45 (2013) 97. 34. Mustapic, M.: Acta Mater. 80 (2014) 457. 35. Shahabuddin, M.: AIP Adv. 4 (2014) 017113. 36. Prikhna, T. A.: Supercond. Sci Technol. 27 (2014) 044013. 37. Athanasiou-Ioannou, A.: J.Supercond. Novel Magnet. 27 (2014) 1041. 38. Mizutani, S.: Supercond. Sci Technol. 27 (2014) 044012. 39. Wu, F.: J. Low Temp. Phys. 177 (2014) 157. 40. Wang, D.: Physica C 508 (2015) 49. 41. Wang, D.: Supercond. Sci Technol. 28 (2015) 105013. 42. Yang, Y.: Sci Rep. 6 (2016) 29306. 43. Prikhna, T.A.: Low Temp. Phys. 42 (2016) 380. * 44. Prikhna, T.: In MgB2 superconducting wires. Ed. R. Flückiger. New Jersey: World Sci Publ. 2016. ISBN 978-981-4725-58-3. P. 131. # 45. Degtyarev, M.V.: Phys. Metals Metall. 117 (2016) 772. 46. Kuznetsova, E.I.: Phys. Solid State 59 (2017) 1695. 47. Chen, S.K.: Vortices Nanostructured Superconductors. Ed. A. Crisan. ISBN 978-3-319-59355-5. Springer 2017. P. 65. 48. Gregor, M.: Applied Surface SCI 461 (2018) SI124. 49. Iwanaka, T.: Supercond. Sci Technol. 32 (2019) 045004. 50. Yang, C.: Ceramics Inter. 45 (2019) 15681. 51. Luo, W.: Supercond. Sci Technol. 32 (2019) 085006. 52. Prikhna, T.: IEEE Trans. Applied Supercond. 29 (2019) 6200905. 53. Krinitsina, T.P.: J. Phys.: Conf. Ser. 1389 (2019) 012068. 54. Matthews, G.A.B.: Supercond. Sci Technol. 33 (2020) 034006. 55. Yang, C.: J. Alloys Comp. 832 (2020) 154561. 56. Zhang, D.: Physica C 578 (2020) 1353749. 57. Yu, X.: Intermetall. 131 (2021) 107104. 58. Capra, M.: IEEE Trans. Applied Supercond. 31 (2021) Iss. 1. 59. Capra, M.: IEEE Trans. Applied Supercond. 31 (2021) Iss. 1.
1. Lu, X.: ICMMT ’07 (2007) 4266159. 2. Zhao, O.: Supercond. Sci Technol. 21 (2008) 125016. 3. De La Pierre, M.: Supercond. Sci Technol. 22 (2009) 045011. 4. Yildirim, G.: Physica B 406 (2011) 1853.
1. Zhang, Y.B.: J. Applied Phys. 99 (2006) 08M512. 2. Zhu, H.M.: Physica C 452 (2007) 11. 3. Lee, T.G.: Physica C 468 (2008) 1888. 4. Kong, X.: Supercond. Sci Technol. 24 (2011) 105013. 5. Shibata, H.: Supercond. Sci Technol. 26 (2013) 035005. 6. Altin, E.: Current Applied Phys. 14 (2014) 245. 7. Baker, A.A.: Supercond. Sci Technol. 31 (2018) 055006.
1. Zhu, H.M.: Physica C 452 (2007) 11. 2. Baker, A.A.: Supercond. Sci Technol. 31 (2018) 055006.
1. Zhu, X.B.: Physica C 403 (2004) 52.
1. Xi, X.X.: Supercond. Sci Technol. 17 (2004) S196. # 2. Xi, X.X.: IoP Conf. Ser. 181 (2004) 37. 3. Matveev, AT.: Supercond. Sci Technol. 18 (2005) 1313. 4. Zhang, Y.B.: J. Applied Phys. 99 (2006) 08M512. 5. Zhu, H.M.: Physica C 452 (2007) 11. 6. Lee, T.G.: Physica C 468 (2008) 1888. 7. Xi, X.X.: Supercond. Sci Technol. 22 (2009) 043001.
1. Xiong, J.: Physica C 442 (2006) 124. 2. Sunder, M.: J. Electr. Mater. 38 (2009) 1931. # 3. Chouial, B.: J. Applied Sci 9 (2009) 197. 4. Vidu, R.: Industrial Engn. Chem. Res. 53 (2014) 7829.
1. Jang, A.: Talanta 83 (2010) 1.
1. Matveev, AT.: Supercond. Sci Technol. 18 (2005) 1313. 2. Mičunek, R.: Physica C 435 (2006) 78. 3. Gregor, M.: Physica C 468 (2008) 785. 4. Yakinci, M.E.: J. Supercond. Novel Magnetism 24 (2011) 235. 5. Yakinci, Z.D.: J. Supercond. Novel Magnetism 24 (2011) 523. 6. Zhou, Z.: Advan. Mater. Res. 479-481 (2012) 1781. 7. Gregor, M.: Applied Surface Sci 312 (2014) 97. 8. Xu, Z.: Supercond. Sci Technol. 30 (2017) 035013.
1. Ogawa, A.: Supercond. Sci Technol. 15 (2002) 1706. 2. Stelzner, T.: IEEE Trans. Applied Supercond. 13 (2003) 2766. 3. Araki, T.: Bulletin Chem. Soc. Japan 77 (2004) 1051. * 4. De Barros, D.: PhD. Thesis. Grenoble: UJF 2004.
1. Malandrino, G.: Chemistry Mat. 16 (2004) 608. * 2. Malandrino, G.: IoP Conf. Ser. No 181 (2004) 1590. 3. Malandrino, G.: Chemical Vapor Deposition 11 (2005) 381. 4. Speller, S.C.: J. Mater. Research 21 (2006) 1645.
1. Tian, H.Y.: J. Alloys Compounds 386 (2005) 283.
* 1. De Barros, D.: PhD. Thesis. Grenoble: UJF 2004.
1. Greene, L.H.: J. Materials Chemistry 14 (2004) 3158. # 2. Chouial, B.: J. Applied Sci 9 (2009) 197.
1. Katti, V.R.: Sensors & Actuators B 96 (2003) 245.
1. Zhu, X.B.: Physica C 403 (2004) 52. 2. Shirage, P.M.: J. Supercond. Novel Magnetism 22 (2009) 455.
1. Petrov, M.I.: Physics Solid State 44 (2002) 1229. 2. Petrov, M.I.: Physics Solid State 49 (2007) 626. 3. Jones, W.A.: Applied Phys. Lett. 97 (2010) 262503.
1. Stevens, C.J.: Supercond. Sci Technol. 13 (2000) L31.
1. Benzi, P.: J. Chemical Sci 119 (2007) 631.
1. Yun, S.H.: Applied Phys. Lett. 77 (2000) 1369. 2. Schilbe, P.: Physica C 391 (2003) 298. * 3. Kúš, P.: Doktor. dizertačná práca. Bratislava: FMFI UK 2003. # 4. Wesche, R.: Physical Properties of High-Temperature Superconductors. Wiley & Sons, Ltd: 2015. ISBN: 978-9971-5-0683-4.
1. Grib, A.N: Phys. Rev. B 65 (2002) 094508.
* 1. Kúš, P.: Doktor. dizertačná práca. Bratislava: FMFI UK 2003.
1. Torok, S.B.: Anal. Chem. 70 (1998) R495.
1. Horovitz, B.: Phys. Rev. B 55 (1997) 14499. 2. Ciria, J.C.: J. of Physics-Cond. Matter 11 (1999) R361.
1. Ciszek, M.: Cryogenics 37 (1997) 637. 2. Ciszek, M.: IEEE Trans. Applied Supercond. 7 (1997) 314. 3. Alford, N.M.: Supercond. Sci Technol. 10 (1997) 169. 4. Gritzner, G.: Physica C 304 (1998) 179. 5. Singh, H.K.: Phys. Lett. A 240 (1998) 253. 6. Jeong, D.Y.: Physica C 297 (1998) 192. 7. Jeong, D.Y.: IEEE Trans. Applied Supercond. 9 (1999) 1677. 8. Jeong, D.Y.: Physica C 314 (1999) 139. 9. Shukor, R.A.: In Proc. WREC ’99: World Renewable Energy Congress ’99 Malaysia, 1999. P. 459. * 10. Chromik, Š.: Doktorská diz. práca. Bratislava, ElÚ SAV 2000. 174 s. 11. Hamdan, N. M.: IEEE Trans. on Applied Supercond. 10 (2000) 1170. 12. Hamdan, N. M.: IEEE Trans. on Applied Supercond. 10 (2000) 1174. 13. Boffa, V.: Philosoph. Magazine B 80 (2000) 979. 14. Prazuch, J.: Physica C 331 (2000) 227. 15. Jeong, D. Y.: Physica C 330 (2000)169. 16. Jeong, D.Y.: IoP Conf. Ser. 167 (2000) 359. 17. Jeong, D.Y.: IoP Conf. Ser. 167 (2000) 363. 18. A-Hamid, N.: Supercond. Sci Technol. 14 (2001) 113. 19. Asthana, A.: Materials Sci 24 (2001) 595. 20. Chen, S.K.: Materials Sci Engn. B 90 (2002) 234. 21. Gritzner, G.: Physica C 366 (2002) 169. 22. Lau, K.T.: Physica C 377 (2002) 547. 23. Chen, S.K.: J. Materials Sci 13 (2002) 345. 24. Altenburg, H.: Pure Applied Chemistry 74 (2002) 2083. 25. Jeong, D.Y.: Physica C 377 (2002) 445. 26. Lee, J.H.: J. Korean Phys. Soc 42 (2003) 662. * 27. McN Alford, N.: In: Handbook Supercond. Materials. Vol. I. Bristol, IoP 2003. P. 793. 28. Pawar, S.H.: Modern Phys. Lett. B 18 (2004) 505. # 29. Rajamani, D.: Proc. Inter. SAMPE Symp. Exhibition 51 (2006). 30. Topal, U.: Physica Status Solidi A 204 (2007) 4259. 31. Jeong, D.Y.: Supercond. Sci Technol. 20 (2007) 1239. 32. Shirage, P.M. : Supercond. Sci Technol. 21 (2008) 065009. 33. Lee, H.K.: J. Supercond. Novel Magnetism 23 (2010) 539. 34. Lee, H.K.: J. Supercond. Novel Magnetism 24 (2011) 2183. 35. Iroh, J.O.: J. Inorg. Organometallic Polymers Mater. 22 (2012) SI595. 36. Khurram, A.A.: Physica C 480 (2011) 19. 37. Khurram, A.A.: J. Applied Phys. 112 (2012) 073920. 38. Khan, N.A.: Solid State Sci 14 (2012) 1458. 39. Khan, N.A.: J. Supercond. Novel Magnetism 27 (2014) 2663. 40. Khan, N.A.: J. Supercond. Novel Magnetism 28 (2015) 2009. 41. Shipra, R.: Supercond. Sci Technol. 28 (2015) 115006. 42. Khan, N.A.: J. Low Temp. Phys. 182 (2016) 38. 43. Xie, Q.-L.: Acta Phys. Sinica 67 (2018) 137401. # 44. Langlet, M.: In Handbook of Sol-Gel Sci Technol: Processing, Character. Appl. Springer 2018. ISBN 978-3-319-32099-1. pp. 429-451. 45. Giebultowski, M.: Acta Phys. Polonica A 135 (2019) 24.
1.Gilabert, A.: J. Low Temp. Phys. 106 (1997) 255. 2. Konsin, P.: Phys. Rev. B 58 (1998) 5795. 3. Kim, I.S.: Japanese J. Applied Phys. 38 (1999) L1532. 4. Lim, H.R.: IEEE Trans. Applied Supercond. 11 (2001) 1355. 5. Seidel, P.: J. Supercond. 14 (2001) 305. 6. Lutciv, R.: Physica C 372 (2002) 1195. 7. Tafuri, F.: Reports Progress Phys. 68 (2005) 2573. 8. Okunev, V.D.: Technical Phys. Lett. 31 (2005) 591.
1. Conde-Gallardo, A.: Physica C 298 (1998) 166. 2. Yang, F.: IEEE Trans. Applied Supercond. 9 (1999) 1975. 3. Prazuch, J.: Physica C 331 (2000) 227. 4. Tanaka, K.: Phys. Rev. B 63 (2001) 064508. 5. Pawar, S.H.: Modern Phys. Lett. B 18 (2004) 505. 6. Abou Aly, A.I.: J. Mater. Sci Technol. 28 (2012) 169.
* 1. Seidel, P.: Weak Superconductivity. Bratislava: IEE SAS 1994. P. 13.
1. Dobrovodský, J.: Chem. listy 88 (1994) 273. 2. Pawar, S.H.: Mater. Res. Bull. 30 (1995) 277. 3. Pawar, S.H.: Mater. Chem. Phys. 39 (1995) 309. 4. Stambolová, I.: Mater. Lett. 30 (1997) 333. 5. Kruis, F.E.: J. Aerosol Sci 29 (1998) 511. * 6. Attoui, M.B.: In Proc. 14th French Congress on Aerosols CFA 1998. P. 175. 7. Turkoglu, S.: J. Supercond. Novel Magnetism 25 (2012) 2087.
1. Wang, Y.L.: J. Applied Phys. 74 (1993) 4052. 2. Messing, G.L.: J. American Ceramic Soc 76 (1993) 2707. 3. Dobrovodský, J.: Chem. listy 88 (1994) 273. 4. Admaiai, L.F.: J. Mater. SCI. 29 (1994) 5817. 5. Condegallardo, A.: J. Supercond. 7 (1994) 697. 6. Schulz, D.L.: Mater. Res. Bull. 30 (1995) 689. 7. Pawar, S.H.: Mater. Res. Bull. 30 (1995) 277. 8. Pawar, S.H.: Mater. Chem. Phys. 39 (1995) 309. 9. Sin, A.: Supercond. Sci Technol. 13 (2000) 617. 10. Wells, J.J.: IoP Conf. Ser. 167 (2000) 318. 11. Sin, A.: Physica C 341 (2000) 399. 12. MacManus-Driscoll, JL.: Supercond. Sci Technol. 14 (2001) 96. 13. Sin, A.: Thin Solid Films 388 (2001) 251. 14. Sin, A.: IEEE Trans. Applied Supercond. 11 (2001) 2877. 15. Shields, T.C.: Supercond. Sci Technol. 15 (2002) 99. 16. Supardi, Z.: Physica C 386 (2003) 296. * 17. Wahl, G.: In: Handbook Supercond. Materials. Vol. I. Bristol: IoP 2003. P. 765. 18. Xu, Z.J.: J. Inorganic Mater. 19 (2004) 1240. 19. Odier, P.: Supercond. Sci Technol. 17 (2004) 1303. 20. Dubinsky, S.: J. Polymer Sci B 43 (2005) 1168. 21. Lumelsky, Y.: J. Mater. Sci 41 (2006) 8202. 22. Al Khateeb, S.: Supercond. Sci Technol. 23 (2010) 095001.
1. Pawar, S.H.: Mater. Chem. Phys. 39 (1995) 309.
1. Bouaicha, F.: IEEE Trans. Applied Supercond. 25 (2015) 7200605.
1. Leskelä, M.: Supercond. Sci Technol. 6 (1993) 627. 2. Volkov, S.V.: J. de Phys. IV. C5 (1995) 553. * 3. Gorbenko, O.Yu.: Supercond.: Research and development 5-6 (1995) 38. 4. Faqir, H.: J. Physics Chem. Solids 58 (1997) 821. * 5. Douglas, L.: In: CVD of Nonmetals. Weinheim: VCH 1996, chapter 2., p. 39.
1. Dobrovodský, J.: Chem. listy 88 (1994) 273. 2. Conde Gallardo, A.: J. Supercond. 9 (1996) 101. # 3. Tonoyan, A.: Materials 2 (2009) 2154. # 4. Tonoyan, A.O.: Ceramic Nanocomp. (2013) 284.
* 1. Fröhlich, K.: Applied Supercond. 1. Ed.H.C.Freyhardt. Oberursel 1993. P. 395. 2. Darhmaoui, H.: Phys. Rev. B 53 (1996) 14621. 3. Tuszynski, J.: Phys. Rev. B 60 (1999) 10513. 4. Andrzejewski, B.: Supercond. Sci Technol. 14 (2001) 904. 5. Akduran, N.: J. Low Temp. Phys. 181 (2015) 183.
1. Sarapatka, T.J.: Applied Surface Sci 68 (1993) 35. * 2. Plecenik, A.: Doktor. diz. práca. Bratislava, ElÚ SAV 1999.
1. Kwasnitza, K.: Physica C 171 (1990) 211. 2. Chaddah, P.: Pramana J. 36 (1991) 3. Altshuler, E.: Physica C 177 (1991) 61. 4. Kumar, S.: Physica C 191 (1992) 450. 5. Golubnickaja, G.V.: Supercond. 5 (1992) 484. 6. Roy, S.B.: Physica C 198 (1992) 383. 7. Altshuler, E.: Cryogenics 33 (1993) 308. 8. Ciszek, M.: Physica C 208 (1993) 245. 9. Makarov, V.V.: Fiz. tverd. tela 35 (1993) 42. 10. Dyachenko, A.I.: Physica C 213 (1993) 167. 11. Altshuler, E.: Cryogenics 33 (1993) 308. 12. Roy, S.B.: Pramana – J. of Phys. 41 (1993) 51. * 13. Mahel, M.: Weak Superconductivity. Bratislava: SAV 1994. P.204. 14. Celebi, S.: Phys. Rev. B 49 (1994) 16009. 15. Lee, W.D.: J. Applied Phys. 77 (1995) 3942. 16. Lan, Y.C.: Sci China Ser. A 39 (1996) 108. * 17. Mahel, M.: Studies of HTS. Nova Sci Publ 17 (1996) 31. 18. Celebi, S.: J. Alloys and Compounds 257 (1997) 14. 19. Mahel, M.: Physica C 308 (1998) 147. 20. Kawano, K.: Supercond. Sci Technol. 13 (2000) 999. 21. Warmont, F.: Supercond. Sci Technol. 14 (2001) 145. 22. Rogacki,K.: Supercond. Sci Technol. 15 (2002) 1151. 23. LeBlanc, M.A.R.: Physica C 403 (2004) 86. 24. Chung, K.C.: Supercond. Sci Technol. 17 (2004) 1113. * 25. Xu, B.: PhD Thesis. Florida: State Univ. College Engn. 2004. 26. Rezeq, M.: Supercond. Sci Technol. 20 (2007) 312.
1. Luo, H.L.: Chinese J. Phys. 30 (1992) 263. 2. Pan, V.M.: Supercond. Sci Technol. 5 (1992) S48. 3. Alzetta, G.: J. de Physique III 4 (1994) 1495.
* 1. Maenhoudt, M.: PhD Thesis. KU Leuven 1994.
1. Mogro-Campero, A.: Supercond. Sci Technol. 3 (1990) 155. * 2. Jergel, M.: Studies of High Temperature Supercond. 5. New York: Nova Sci. Publ. 1990. P. 293. * 3. Jergel, M.: Elektrotechn. časopis 41 (1990) 727. 4. Ogale, S.B.: Appl. Phys. Lett. 57 (1990) 1805. 5. Habermeier, H.V.: Vacuum 41 (1990) 859. 6. Tsukamoto, A.: J. Applied Phys. 68 (1990) 5278. * 7. Poirot, C.: Sci Technol. Thin Films Supercond. 2. New York: Plenum Press 1990. 8. Jegorov, A.Y.: ŽTF 61 (1991) 106. 9. Nordman, C.A.:J. Applied Phys. 70 (1991) 5697. 10. Pinto, R.: J. Vacuum Sci Technol. A 9 (1991) 2670. 11. Stamper, A.K.: J. Vacuum Sci Technol. A 9 (1991) 2158. 12. Jergel, M.: Ind. J. Pure Applied Phys. 30 (1992) 511. 13. Jergel, M.: Supercond. Sci Technol. 8 (1995) 67. 14. Phillips, J.M.: J. Applied Phys. 79 (1996) 1829. 15. Afonso, S.: J. Mater. Res. 12 (1997) 2947.
1. Don, S.X.: Supercond. Sci Technol. 3 (1990) 138. 2. Vad, K.: Cryogenics 30 (1990) 660.
1. Seidel, P.: Phys. Status Solidi A 122 (1990) 645. * 2. Seidel, P.: Proc. 22nd Int. Symp. Supercond. & Cryoel. Georgenthal: 1990. P. 68. 3. Walsh, T.: Phys. Rev. Lett. 66 (1991) 516. 4. Walsh, T.: Inter. Mod. Phys. B 6 (1992) 125. * 5. Hasegawa, T.: Physical Properties of High Temperature Superconductors III. 1992. 6. Sarapatka, T.J.: Applied Surface Sci. 68 (1993) 35.
1. Evets, J.E.: Thin Solid Films 174 (1989) 165. * 2. Jergel, M.: Studies of High Temp. Supercond. 5. NewYork: Nova Sci. Publ. 1990. P.293. * 3. Jergel, M.: Elektrotechn. časopis 41 (1990) 727. 4. Somekh, R.E.: Progress in High Temperature Supercond. 24. Singapore: World Sci. 1990. P.257.
1. Lobotka, P.: Phys. Status Solidi A 109 (1988) 205.
1. Lobotka, P.: Phys. Status Solidi B 109 (1988) 205.