1. Monk, S.D.: IEEE Nuclear Sci Symp. Medical Imag. Conf. (NSS/MIC), 2019, pp. 1. 2. Peng, J.: Nuclear Instr. Methods in Phys. Res. A 969 (2020) 164017. 3. Bernat, R.: Materials 14 (2021) no. 17. 4. Zhang, L.: IEEE Sensors J. 21 (2021) 20145. 5. Zhang, L.L.: IEEE Sensors J. 22 (2022) 10620. 6. Zhu, Z.F.: Nuclear Sci Techniq. 33 (2022) 85. 7. Capan, I.: Electronics 11 (2022) 532.
Zaťko, B., Šagátová, A., Sedlačková, K., Boháček, P., Sekáčová, M., Kováčová, E., and Nečas, V.: Neutron detection using epitaxial 4H-SiC detector structures. In: ASDAM 2018. IEEE 2018. ISBN 978-1-5386-7488-8. P. 41-44.1. Slavicek, T.: J. Instrument. 15 (2020) C01036.
Zaťko, B., Hrubčín, L., Šagátová, A., Osvald, J., Boháček, P., Zápražný, Z., Sedlačková, K., Sekáčová, M., Dubecký, F., Skuratov, V.A., Korytár, D., and Nečas, V.: Schottky barrier detectors based on high quality 4H-SIC semiconductor: electrical and detection properties, Applied Surface Sci 461 (2018) 276-280.1. Zhou, Y.: Carbon 148 (2019) 387. 2. Dong, P.: IEEE Access 7 (2019) 170385. 3. Sarac, Y.: J. Alloys Comp. 824 (2020) 153899. 4. Xie, X.-M.: Trans. Nonferr. Metals Soc China 30 (2020) 3058. 5. Jiang, L.: Nuclear Instr. Methods in Phys. Res. A 1048 (2023) 167917.
Zaťko, B., Zápražný, Z., Jakůbek, J., Šagátová, A., Boháček, P., Sekáčová, M Korytár, D., Nečas, V., Žemlička, J., Mora, Y., and Pichotka, M.: Imaging performance of Timepix d etector based on semi-insulating GaAs, J. Instrument. 13 (2018) C01034.1. Veale, M. C.: J. Phys. D 52 (2019) 085106. 2. Curtis, T.E.: J. Medical Imaging 6 (2019) 013501.
Dubecký, F., Osvald, J., Kindl, D., Hubík, P., Dubecký, M., Gombia, E., Šagátová, A., Boháček, P., Sekáčová, M., and Nečas, V.: Photocurrent spectra of semi-insulating GaAs M-S-M diodes: role of the contacts, Solid-State Electr. 118 (2016) 30-35.# 1. Abdulkhaev, O.: Inter. Conf. Inf. Sci Comm. Techn. – ICISCT 2020, art. no. 9351463.
Zaťko, B., Šagátová, A., Boháček, P., Sedláčková, K., Sekáčová, M., Arbet, J., and Nečas, V.: The influence of high-energy electrons irradiation on the electrical properties of Schottky barrier detectors based on semi-insulating GaAs, J. Instrument. 11 (2016) C01076.1. Chia, J.Y.: Applied Phys. Express 15 (2022) 107002.
Zaťko, B., Šagátová, A., Sedláčková, K., Boháček, P., Sekáčová, M., Kohout, Z., Granja, C., and Nečas, V.: Radiation detector based on 4H-SiC used for thermal neutron detection, J. Instrument. 11 (2016) C11022.# 1. Anderson, P.: Proc. Inter. Workshop on Future Linear Colliders – LCWS 2016. 2. Liu, L.: Sensors Actuators A 280 (2018) 245. 3. Pavlovic, M.: AIP Conf. Proc. 1996 (2018) 020037. 4. Zhuraev, K.N.: J. Engn. Phys. Thermophys. 93 (2020) 1036. 5. Hong, B.: IEEE Trans. Nuclear Sci 69 (2022) 639. 6. Zhang, L.: IEEE Trans. Nuclear Sci 69 (2022) 2103. 7. Holiatkina, M.: J. Applied Phys. 134 (2023) 145702.
Sasinková, V., Huran, J., Kleinová, A., Boháček, P., Arbet, J., and Sekáčová, M.: Raman spectroscopy study of SiC thin films prepared by PECVD for solar cell working in hard environment, Proc. SPIE 9563 (2015) 95630V.1. de Obaldia, E.I.:Applied Sci-Basel 11 (2021) 3990.
Huran, J., Boháček, P., Shvetsov, V., Kobzev, A., Kleinová, A., Sasinková, V., Balalykin, N., Sekáčová, M., and Arbet, J. : Amorphous silicon carbide thin films deposited by plasma enhanced chemical vapor deposition at different temperature for hard environment applications. In: 21st Inter. Symp. Plasma Chemistry. Cairns (Australia) 2013. Výveska.1. Marvi, Z.: RSC Adv. 7 (2017) 19189. 2. van Laar, J. H.: J. Europ. Ceramic Soc 38 (2018) 1197. 3. Lukianov, A.N.: J. Alloys Compounds 801 (2019) 285.
1. Mutch, M.J.: Microelectron. Reliab. 63 (2016) 201. 2. Wei, J.: Ceramics Inter. 44 (2018) 20375.| 3. Su, Q.: Acta Materialia 165 (2019) 587. # 4. Zhang, X.: In 4th ICREED 2021.
1. El Khalfi, A.: Spectroscopy Lett. 47 (2014) SI392. 2. Wang, B.: Nanoscale 7 (2015) 14489. 3. Wang, R.: Plasma Process. Polym. 14 (2017) e1600248. # 4. Baskar, S.: Inter. J. Mechan. Engn. Technol. 8 (2017) 250. 5. Baskar, S.: J. Surface Sci Technol. 34 (2018) 116. 6. Yoshimura, S.: Nuclear Instr. Methods in Phys. Res. B 430 (2018) 1. 7. Su, Q.: Acta Materialia 165 (2019) 587. 8. Baskar, S.: Adv. Mater. Process. Technol. 5 (2019) 438. 9. Baskar, S.: J. Surface Sci Technol. 35 (2019) 107. # 10. Baskar, S.: Inter. J. Engn. Adv. Technol. 8 (2019) 787. 11. Mirzayev, M.N.: Physica B 611 (2021) 412842. 12. Yoshimura, S.: PLOS One 16 (2021) 0259216.
1. Liu, L.Y.: Diamond Related Mater. 73 (2017) 177. # 2. Ouyang, X.: Yuanzineng Kexue Jishu/Atomic Energy Sci Technol. 53 (2019) 1999. # 3. Liu, L.: Yuanzineng Kexue Jishu/Atomic Energy Sci Technol. 56 (2022) 1987.
Huran, J., Valovič, A., Kučera, M., Kleinová, A., Kováčová, E., Boháček, P., and Sekáčová, M.: Hydrogenated amorphous silicon carbon nitride films prepared by PECVD technology: properties, J. Electr. Engn. 65 (2012) 333-335.
1. Gangopadhyay, U.: J. Renewable Sustainable Energy 5 (2013) 031607. 2. Ivashchenko, V.I.: Thin Solid Films 569 (2014) 57. # 3. Kozak, A.O.: J. Nano- and Electron. Phys. 6 (2014) 04047. 4. Fainer, N. I.: J. Struct. Chem. 56 (2015) 163. 5. Fainer, N. I.: ECS J. Solid State Sci Technol. 4 (2015) SIN3153. 6. Haacke, M.: Europ. Phys. J.-Special Top. 224 (2015) 1935. 7. Porada, O. K.: J. Superhard Mater. 38 (2016) 263. 8. Khatami, Z.: Thin Solid Films 622 (2017) 1. 9. Fainer, N. I.: J. Struct. Chem. 58 (2017) 119. 10. Porada, O. K.: J. Nano- Electron. Phys. 9 (2017) 02022. 11. Fainer, N.I.: Glass Phys. Chem. 43 (2017) 410. 12. He, W.: J. Ceramic Soc Japan 126 (2018) 253. 13. Khatami, Z.: J. Luminesc.196 (2018) 504. 14. Khatami, Z.: ECS J. Solid State Sci Technol. 7 (2018) N7. 15. Fainer, N.I.: Glass Phys. Chem. 44 (2018) 607. 16. Porada, O. K.: J. Superhard Mater. 41 (2019) 32. 17. Sukach, A.V.: J. Non-Crystall. Solids 523 (2019) UNSP 119603. 18. Fainer, N.I.: J. Struct. Chem. 61 (2020) 1865. 19. Ivashchenko, V.I.: Inter. J. Hydrogen Energy 47 (2022) 7263. 20. Sukach, A.V.:Mater. Sci Semicond. Process. 143(2022) 106515.
1. Zhang, X.: J. Applied Phys. 115 (2014) 063508.
1. Chernykh, A.V.: J. Instrument. 10 (2016) C01021. 2. Chernykh, A.V.: J. Instrument. 11 (2016) C12005. 3. Hodgson, M.: Measurement Scie Technol. 28 (2017) 105501. 4. Chernykh, S.V.: Instrum. Experimen. Techniq. 62 (2019) 312. 5. Ozden, S.: Inter. J. Surface Sci Engn. 13 (2019) 79.
1. Iacobaeus, C.: IEEE Trans. Nuclear Sci 53 (2006) 554. 2. Zentai, G.: Proc. 2007 IEEE Inter. Workshop on Imaging Systems Techniques art. no. 4258788. 3. Jackson, J.B.: Measurement Sci Technol. 20 (2009) 075502. * 4. Ladziansky, M.: PhD. Thesis. Bratislava: FEI STU 2009. # 5. Prokopyev, D.G.: Proc. IFOST 2012 (2012) art. no. 6357750. 6. Veale, M. C.: Nuclear Instrum. Methods in Phys. Res. A 752 (2014) 6. 7. Turkington, G.: Nuclear Instr. Methods in Phys. Res. A 911 (2018) 55.
1. Pino, R.: J. Crystal Growth 290 (2006) 29. 2. Zwerger, A.: Nuclear Instr. Methods A 576 (2007) 23. * 3. Ladziansky, M.: PhD. Thesis. Bratislava: FEI STU 2009.
* 1. Ladziansky, M.: PhD. Thesis. Bratislava: FEI STU 2009.
1. Zavadil, J.: J Optoelectr. Advanced Mater. 9 (2007) 1221. 2. Kim, H.: J. Electrochem. Sci Technol. 9 (2018) 78.
* 1. Pelfer, P.G: SIMC-XII-2002. Piscataway: IEEE 2002. P. 273. 2. Gorodynskyy, V.: Nuclear Instr. Methods A 555 (2005) 288. * 3. Perďochová, A.: PhD. Thesis. Bratislava: FEI STU 2005. 4. Zdansky, K.: IEEE Trans. Nuclear Sci 56 (2009) 2997.
1. Ladziansky, M.: In: ASDAM 2008. Piscataway: IEEE 2008. P. 179. 2. Sagatova-Perd’ochova, A.: Nuclear Instr. Methods Phys. Res. A 591 (2008) 98. 3. Bialous, M.: Applied Physics B 96 (2009) 471. * 4. Ladziansky, M.: PhD. Thesis. Bratislava: FEI STU 2009. 5. Sedlackova, K.: Nuclear Instrum. Methods Phys. Res. A 709 (2013) 63. 6. Aldemir, D.A.: Silicon 11 (2019) 2647.
1. Gorodynskyy, V.: Nuclear Instr. Methods A 555 (2005) 288. # 2. Procházková, O.: J. Crystal Growth 275 (2005) e959. 3. Pino, R.: J. Crystal Growth 290 (2006) 29. 4. Celik, A.: X-Ray Spectrometry 37 (2008) 490. 5. Yatskiv, R.: Nuclear Instr. Methods A 598 (2009) 759. 6. Zdansky, K.: IEEE Trans. Nuclear Sci 56 (2009) 2997. 7. Owens, A.: Compound Semicond. Radiation Detectors. CRC Press-Taylor 2012 ISBN:978-1-4398-7313-7. P. 287-368. 8. Mouleeswaran, D.: J. Crystal Growth 362 (2013) 238. 9. Lioliou, G.: J. Applied Phys. 124 (2018) 195704.
* 1. Ladziansky, M.: PhD. Thesis. Bratislava: FEI STU 2009. 2. Khamari, S.: Nuclear Instr. and Methods in Phys. Res. B 269 (2011) 272. 3. Abhirami, K.M.: Radiation Phys. Chem. 91 (2013) 35. 4. Kumari, M.: Nuclear Instrum. Methods in Phys. Res. A 753 (2014) 116. 5. Rana, P.: Nuclear Instr. and Methods in Phys. Res. B 349 (2015) 50. 6. Sadhasivam, S.: Mater. Res. Bull. 74 (2016) 117. 7. Chauhan, R. P.: Nuclear Instr. Methods in Phys. Res. B 379 (2016) 78. 8. Garnica, O.: IEEE Trans. Nuclear Sci 64 (2017) 1095. 9. Peng, J.: Nuclear Instrum. Methods in Phys. Res. A 969 (2020) 164017. 10. Oufi, A.M.: Radiation Phys. Chem. 170 (2020) 108494.
1. Šatka, D.: Materials Sci & Engn. B 91-92 (2002) 239. * 2. Perďochová, A.: PhD. Thesis. Bratislava: FEI STU 2005.
* 1. Owens, A.: ESLAB Report No. 2001/018, p. 1-9. * 2. Owens, A.: ESLAB Report No. 2002/052/ST, p. 1-12. 3. Owens, A.: Nuclear Instr. & Methods A 487 (2002) 435. 4. Mikulec, B.: Nuclear Instr. & Methods A 510 (2003) 1. 5. Sellin, P.J.: Nuclear Instr. & Methods A 513 (2003) 332. * 6. Owens, A.: Proc. SPIE 4851 (2003) 1059. 7. Zavadil, J.: In: ASDAM 2004. Piscataway: IEEE 2004. P. 247. 8. Laird, J.S.: Nuclear Instr. Methods A 541 (2005) 228. 9. Gorodynskyy, V.: Nuclear Instr. Methods A 555 (2005) 288. 10. Zdansky, K.: IEEE Trans. Nuclear Sci 53 (2006) 3956. 11. Prochazkova, O.: J. Material. Sci-Mater. Electr. 19 (2008) 770. 12. Gorodynskyy, V.: IEEE Trans. Nuclear Sci 55 (2008) 2785. 13. Yatskiv, R.: Nuclear Instr. Methods A 598 (2009) 759. 14. Zdansky, K.: IEEE Trans. Nuclear Sci 56 (2009) 2997. 15. Grym, J.: Mater. Sci Engn. B 165 (2009) 94. 16. Fukuda, Y.: Nuclear Instr. Methods in Phys. Res. A 623 (2010) 460.
1. Mikulec, B.: Nuclear Instr. & Methods A 510 (2003) 1. * 2. Ladziansky, M.: PhD. Thesis. Bratislava: FEI STU 2009. 3. Rangel-Kuoppa, V.T.: J. Instrum. 16 (2021) P09012.
1. Zdansky, K.: Semicond. Sci Technol. 16 (2001) 1002.
1. Lioliou, G.: J. Applied Phys. 124 (2018) 195704.
Dubecký, F., Darmo, J., Krempasky, M., Sekáčová, M., Zaťko, B., Boháček, P., Bešše, I., Ruček, M., Nečas, V., Pelfer, P., Senderák, R., Pinčík, E., Somora, M., Kolesár, F., Hudek, P., Kostič, I., : Technology and performance of x-and γ-ray 32 pixel line detector based on semi-insulating GaAs, J. Electrical Engn. 51 (2000) 30-35.1. Kordyasz, A.J.: Nuclear Instr. Methods A 545 (2005) 716.
1. Causley, R.L.: Physica B 302 (2001) 327.
1. Gryaznov, D.V.: Instrum. Exp. Techn. 44 (2001) 462. 2. El-Abbassi, H.: Nuclear Instr. Methods A 466 (2001) 47. 3. Gorodynskyy, V.: Nuclear Instr. Methods A 555 (2005) 288. 4. Gorodynskyy, V.: IEEE Trans. Nuclear Sci 55 (2008) 2785. 5. Yatskiv, R.: Nuclear Instr. Methods A 598 (2009) 759. 6. Pekarek L.: 2008 IEEE 20th Inter. Conf. on Indium Phosphide and Related Materials (IPRM). IEEE (2008) P. 8. 7. Yatskiv, R.: 2008 IEEE 20th Inter. Conf. on Indium Phosphide and Related Materials (IPRM). IEEE (2008) P. 4. 8. Zdansky, K.: IEEE Trans. Nuclear Sci 56 (2009) 2997. 9. Yatskiv, R.: Nuclear Instr. Methods A 612 (2010) 334. # 10. Yatskiv, R.: 12th Inter. Workshop on Radiation Imaging Detectors. Cambridge 2010. P. 161. 11. Yatskiv, R.: J. Instrum. 6 (2011) C01072. * 12. Avenel-Le Guerroue, M.L.: PhD Thesis. Grenoble: CEA – LETI – Direction de la Recherche Technologique 2012. 13. Yatskiv, R.: J. Instrum. 7 (2012) C10005.
1. Gryaznov, D.V.: Instrum. Exp. Techn. 44 (2001) 462. * 2. Owens, A.: ESLAB Report No. 2001/018. P. 1-9. 3. Zdansky, K.: Semicond. Sci Techn. 16 (2001) 1002. 4. Owens, A.: Nuclear Instr. Methods A 487 (2002) 435. 5. Gorodynskyy, V.: Nuclear Instr. Methods A 555 (2005) 288. 6. Zdansky, K.: IEEE Trans. Nuclear Sci 56 (2009) 2997.
1. Gorodynskyy, V.: Nuclear Instr. Methods A 555 (2005) 288.
1. Kordyasz, A.J.: Nuclear Instr. Methods A 545 (2005) 716. # 2. Lezhneva, G.M.: Russian Microelectr. 34 (2005) 229.