Národné
Transit2D – Tranzistory na báze 2D kovových chalkogenidov pripravených teplom podporovanou konverziou | |
Transistors based on 2D Metal Chalcogenides Grown via Thermally Assisted Conversion | |
Program: | APVV |
Zodpovedný riešiteľ: | Ing. Ťapajna Milan, PhD. |
Anotácia: | 2D materiály majú schopnosť vytvárať atomárne tenké vrstvy s mimoriadnymi vlastnosťami. Jednou znajsľubnejších skupín 2D materiálov sú dichalkogenidy prechodných kovov (TMD). Zmena typu energetickejmedzery z nepriamej na priamu pri stenčovaní na monoatomárnu vrstvu vedie k jedinečným elektrickým a optickýmvlastnostiam 2D TMD. Ďalšou zaujímavou skupinou 2D materiálov sú chalkogenidy post-prechodných kovov(PTMC). Tieto materiály majú širokú energetickú medzeru a v závislosti od štruktúry materiálu vykazujúanizotropné elektrické a optické vlastnosti. Cieľom tohto projektu je príprava poľom riadených tranzistorov sizolovaným hradlom (MOSFET) a ultra-tenkou kanálovou vrstvou na báze vybraných TMD a PTMC a podrobnéštudovanie ich transportných vlastností. Zameriame sa na veľkoplošné niekoľkovrstvové PtSe2 a GaS/GaSe vrstvyrastené teplom asistovanou konverziou, teda sulfurizáciou a selenizáciou. Na základe existujúcich skúsenostíbudeme optimalizovať štruktúrne a elektrické vlastnosti horizontálne-orientovaných PtSe2 vrstiev pripravenýchselenizáciou s cieľom dosiahnutia pohyblivosti nosičov náboja porovnateľnej s najkvalitnejšími vrstvamipripravenými mechanickou exfoliáciou. Následne budeme vyvíjať a optimalizovať procesnú technológia MOSFETsúčiastok využívajúca architektúru hornej aj spodnej hradlovej elektródy. Na rast hradlových oxidov budú použitéetablované metódy rastu po atomárnych vrstvách a chemickej depozície z pár organokovových zlúčenín (MOCVD).2D vrstvy GaS/GaSe budeme pripravovať pomocou chalkogenizácie ultratenkých vrstiev Ga2O3 rastenýchmetódou MOCVD. Po vývoji a optimalizácii rastu 2D GaS/GaSe sa zameriame na vývoj MOSFET súčiastok.Okrem elektrických vlastností budeme skúmať aj optické vlastnosti pripravených 2D materiálov. |
Doba trvania: | 1.7.2022 – 30.6.2026 |
NanoMemb-RF – Moderné nanomembránové heteroštruktúry na báze GaAs pre vysoko produktívne vysokofrekvenčné prvky | |
Advanced GaAs-based nanomembrane heterostructures for highperformance RF devices | |
Program: | APVV |
Zodpovedný riešiteľ: | RNDr. Gregušová Dagmar, DrSc. |
Anotácia: | Hlavným cieľom navrhovaného projektu je rozšírenie znalostí a zvládnutie technológie prípravy pokročilýchnanomembránových heteroprechodových prvkov na báze AlGaAs/GaAs pre vysoko produktívnevysokofrekvenčné aplikácie. Nedostatočné odstraňovanie zvyškového tepla v elektronických prvkoch spôsobenéJouleovými stratami vedúce k prehrievaniu a rýchlemu zlyhávaniu týchto prvkov často vyžaduje využitiecudzorodých, vysoko tepelovodivých substrátov. V protiklade ku hlavnému smeru výskumu elektronických prvkovna báze GaN pripravovaných priamo na samonosných zafírových alebo SiC substrátoch, navrhované prvky nabáze GaAs budú zostavené na samonosných heteroštruktúrnych nanomembránach prenesených na rôznecudzorodé substráty. Je to veľmi aktuálny, originálny a vhodný prístup na rozšírenie využitia potenciálu prvkov na báze materiálu GaAs, ako to už bolo preukázané našími pôvodnými výsledkami. |
Doba trvania: | 1.7.2022 – 30.6.2025 |
Štúdium dynamiky magnetického víru pre využitie v súčiastkach | |
Study of magnetic vortex dynamics for device applications | |
Program: | VEGA |
Zodpovedný riešiteľ: | Ing. Šoltýs Ján, PhD |
Anotácia: | V projekte sa zameriame na teoretické a experimentálne skúmanie magnetických vírov. Cieľom je ich využitieako nosiča informácií v ultra rýchlych a energeticky efektívnych zariadeniach. Podstatou takejto pamäte jepoužitie dvoch možných polarít jadra víru ako magnetického bitu, ktorý je možné ľahko čítať a zapisovaťpomocou dynamického premagnetovania. Budeme hľadať optimálny tvar magn. 3D objektu, tak aby jeho polaritabola ľahko ovládateľná slabým magn. poľom orientovaním v rovine objektu. V druhej časti projektu navrhneme apripravíme systém usporiadaných magnetických nanoelementov, ktorý bude možné nastaviť do stavu vírumagnetickým poľom orientovaním v rovine nanoelementov. Takáto sústava usporiadaných nanolementov môžebyť považovaná ako samostatná bunka magnonického kryštálu. Bunka môže byť periodicky usporiadaná dokonečného 2D poľa interagujúcich mag. objektov na pozorovanie jednosmerných spinových vĺn. Naše skúmaniebude dôležitým krokom k prvej experimentálnej demonštrácii topologických magnónov. |
Doba trvania: | 1.1.2022 – 31.12.2024 |
Výskum a vývoj kontaktov pre nové materiály a súčiastky | |
Contact engineering for advanced materials and devices | |
Program: | VEGA |
Zodpovedný riešiteľ: | RNDr. Gregušová Dagmar, DrSc. |
Anotácia: | Intenzívny výskum kontaktu kovu a polovodiča sa uskutočňuje už dlhý čas. Zaujímavé typy transportu náboja, nové materiály a súčiastky a nové mechanizmy vytvárania kontaktov si však vyžadujú nový pohľad a výskum.Naším cieľom je určiť procesy a fyzikálne javy, ktoré stoja za metalizačnými schémami pre tranzistory pracujúcev obohacovacom režime, s dierovou vodivosťou a vysokou pohyblivosťou na báze InAlN, ako to predpokladá nášnávrh súčiastky. InAlN s vysokou molárnou frakciou InN bude dotovaný Mg a bude potrebné optimalizovať kontakty.Nové dichalkogenidové (TMDCs) materiály z prechodových kovov sú pre aplikácie v súčiastkách veľmi sľubné.Metalizačné schémy pre TMDC sú však veľmi náročné. TMDC vykazujú rôzne šírky zakázaného pásu vzávislosti od ich hrúbky. Naším cieľom je študovať metalizačné schémy pre TMDC, ich topológiu a vysvetliťrozdiely medzi exfoliovanými a narastenými vziorkami a rozdiely medzi rôznymi typmi tranzistorov v korelácii sich základnými fyzikálnymi vlastnosťami. |
Doba trvania: | 1.1.2021 – 31.12.2024 |
Robustné spinové vlny pre budúce magnonické aplikácie | |
Robust spin waves for future magnonic applications | |
Program: | APVV |
Zodpovedný riešiteľ: | Dr. Mruczkiewicz Michal |
Anotácia: | V tomto projekte sa zameriame na teoretický a experimentálny výskum transportu spinových vĺn v nanoštruktúrach. Vďaka svojim výnimočným vlastnostiam, ako sú nízke energetické straty, sub-mikrometrová vlnová dĺžka a rekonfigurovatelnosť, je spinová vlna potenciálnym kandidátom ako nosič informácie v ultrarýchlych a energeticky efektívnych logických hradlách a pamätiach. Cieľom našeho výskumu budú špecifické systémy, použitelné ako nosiče robustných, jednosmerných a reprogramovateľných spinových vĺn. Výsledky našeho výskumu budú dôležité v oblasti magnetizmu a magnoniky. |
Doba trvania: | 1.7.2020 – 30.6.2023 |