Projects

National

Transit2D – Tranzistory na báze 2D kovových chalkogenidov pripravených teplom podporovanou konverziou
Transistors based on 2D Metal Chalcogenides Grown via Thermally Assisted Conversion
Program: SRDA
Project leader: Ing. Ťapajna Milan, PhD.
Annotation: 2D materials can form one-atom-thick sheets with extraordinary properties. One of the most promising classes of2D materials is the transition metal dichalcogenides (TMDs). The transition from an indirect to a direct bandgap,when the bulk materials is thinned down to a monolayer, results in unique electrical and optical properties of 2DTMDs. Post-transition metal chalcogenides (PTMCs) represents another interesting group of 2D materials. Thesematerials have wide band gap and, depending on the structure of the material, show anisotropic electrical andoptical properties. The aim of this project is the fabrication of field-effect transistors with metal-oxide-semiconductorgate (MOSFETs) based on selected TMDs and PTMCs compounds and detail analysis of their transport properties.We will focus on large-area few-layer PtSe2 and GaS/GaSe films grown by thermal assisted conversion, i.e.sulfurization and selenization. Based on the existing experiences, structural, chemical and electrical properties ofhorizontally-aligned PtSe2 films prepared by selenization will be optimized, targeting mobilities similar to thoseprepared by mechanical exfoliation. Then, MOSFET technology using both, top-gate as well as bottom-gateapproach will be developed and optimized. Atomic layer deposition and metal-oxide chemical vapor deposition(MOCVD) will be employed for gate oxide growth. GaS/GaSe few-layer films will be prepared by chalcogenization
Duration: 1.7.2022 – 30.6.2026
NanoMemb-RF – Moderné nanomembránové heteroštruktúry na báze GaAs pre vysoko produktívne vysokofrekvenčné prvky
Advanced GaAs-based nanomembrane heterostructures for highperformance RF devices
Program: SRDA
Project leader: RNDr. Gregušová Dagmar, DrSc.
Annotation: The main aim of the proposed project is to expand the basic knowledge and to master the fabrication technology ofthe advanced nanomembrane AlGaAs/GaAs heterojunction devices for high-performance RF applications.Insufficient removal of the waste heat in electronic devices due to the Joule losses leading to overheating and earlydevice failure often requires foreign, high thermal conductivity substrates to be employed. As opposed to themainstream research of the GaN-based electronic devices prepared directly on sapphire or SiC, proposed GaAsbased devices will be fabricated upon self-supporting heterostructure nanomembranes transferred onto varioussubstrates. It is very timely, original, and desirable approach to extend the utilization of the GaAs-based devicesmaterial potential, as demonstrated by our preliminary results.
Duration: 1.7.2022 – 30.6.2025
Štúdium dynamiky magnetického víru pre využitie v súčiastkach
Study of magnetic vortex dynamics for device applications
Program: VEGA
Project leader: Ing. Šoltýs Ján, PhD
Annotation: In this project, we will focus on the theoretical and experimental investigation of magnetic vortices. The idea is touse them as a candidate for an information carrier in ultrafast and energy-efficient devices. The key idea of suchmemory is to use the two vortex core polarities as a magnetic bit that can be easily read and written via thedynamical reversal. We will search for the optimal shape of a magnetic 3D pattern with polarity easily controlledby a small in-plane magnetic field. In the second part of the project, we will design and prepare a system ofordered magnetic nanoelements in the vortex state set by an in-plane magnetic field. Such ordered nanoelementscan be considered as a single unit cell of the magnonic crystal. They can be also periodically arranged into afinite 2D array of interacting magnetic objects to observe the unidirectional spin waves. Therefore, ourinvestigation will be an important step towards the first experimental demonstration of topological magnons.
Duration: 1.1.2022 – 31.12.2024
Výskum a vývoj kontaktov pre nové materiály a súčiastky
Contact engineering for advanced materials and devices
Program: VEGA
Project leader: RNDr. Gregušová Dagmar, DrSc.
Annotation: Intensive research has so far been done into metallic contacts to semiconductors. However, new types ofconductivity, materials and devices, and new contact formation mechanisms require new insights into theformation of such contacts. Our aim is to determine the processes and physics behind metallization schemes fornormally-off InAlN-based heterostructure high electron mobility transistors with hole conductivity. InAlN with ahigh molar fraction of InN will be doped with Mg, and the ohmic and Schottky metallic stacks will be optimized. New transition metal dichalkogenide materials (TMDCs) are very promising for new device applications. However,metallization schemes for TMDCs are very challenging. TMDCs exhibit varying band gap widths in dependenceof their thickness. Our aim is to study metallization schemes for TMDCs, their topology, and explain differences between ex-foliated and grown samples, and differences between back-gated and top-gated devices in correlation with basic TMDCs properties.
Duration: 1.1.2021 – 31.12.2024
Robustné spinové vlny pre budúce magnonické aplikácie
Robust spin waves for future magnonic applications
Program: SRDA
Project leader: Dr. Mruczkiewicz Michal
Annotation: In this project we will focus on the theoretical and experimental investigation of spin wave dynamics at nanoscale. Spin wave is considered as candidate for an information carrier in ultrafast and energy efficient information processing devices. It is due the unique properties of spin waves, namely low heat dissipation, possible manipulation at nanoscale or reconfigurability. We are going to investigate specific spin wave systems, that can host robust, unidirectional and reprogrammable spin waves. Therefore, the results of this project will contribute to the field of modern magnetism, magnonics.
Duration: 1.7.2020 – 30.6.2023