Projects

National

Tepelná stabilita supravodivých cievok a filamentovaných REBCO pások
Thermal stability of superconducting coils and filamentized REBCO tapes
Program: VEGA
Project leader: Mgr. Seiler Eugen, PhD
Annotation: The project investigates electro-thermal stability of filamentized superconducting REBCO tapes andsuperconducting coils at transporting the electric current. The goal is to develop theoretical models and numericalmethods allowing to determine the maximum transport current that can flow through a superconducting coil orthrough a filamentized tape without the risk of a rapid local heating. Characterization of tapes and coils will bebased on the standard measurement methods as well as on specially designed experiments, which will allow toincorporate the real parameters of available superconducting tapes into the models. In order to experimentallyverify the theoretical models of thermal stability of superconducting coils, specific model coils will be built,equipped with multiple voltage and temperature sensors for detailed monitoring of the electro-thermal stability.The outcomes of the theoretical models will subsequently be applied at manufacturing bigger coils, relevant forrealistic electric devices.
Duration: 1.1.2024 – 31.12.2026
Nízkostratový supravodivý kábel typu CORC z REBCO vodičov
Low-loss superconducting CORC-like cable from REBCO conductors
Program: VEGA
Project leader: Mgr. Seiler Eugen, PhD
Annotation: Aim of the project is to elaborate the design of a superconducting CORC-like cable with considerably reduced AClosses. Project is focused on identification of the key parameters of the cable design, on the construction of modelcables and their experimental characterisation. The research will follow two basic directions: optimisation ofgeometrical layout of the individual REBCO tapes in the cable and investigation of possible utilisation of lowconductivity materials for the central core of the cable. Geometrical optimisation of the cable will be based onresults of numerical simulations employing the Finite Element Method and the Minimum Electro-Magnetic EntropyProduction method. In the experimental part, sets of short model cables will be manufactured for tests of differentgeometrical configurations and different materials for the central core. Investigated will be the total AC losses,basic transport parameters and degradation of superconducting tapes due to mechanical loading in the cablingprocess.
Duration: 1.1.2021 – 31.12.2023
Vysokoteplotná supravodivá cievka pre motory elektrických a hybridných lietadiel
High temperature superconducting coils in motors for electric and hybrid aircrafts
Program: SRDA
Project leader: Mgr. Pardo Enric, PhD.
Annotation: Full superconducting electric motors are very promising to provide therequired power density to enablecommercial hybrid and electric airplanes. These can reduce emissions by75 % in CO2 and 90 % in NOx, followingthe ACARE Flightpath 2050 targets of the European Union. Superconductingmotors can also be applied to cleanersea or sweet water transport. In spite of the extensive research in thearea, the electro-magnetic and electro-thermal properties of superconducting coils in the motor magneticenvironment remain largely unknown, partiallybecause of the lack of measurements of the relevant temperatures(between 20-40 K) and modeling methods forfull superconducting motors.The aim of this project is to gain this understanding and develop numerical modeling methods to enable the design of future superconducting motors. These methods will be compared to experiments in the relevant temperature range for motor applications.
Duration: 1.7.2020 – 30.6.2023